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Problem description: 

Computer vision aims at the development of algorithms that can match human visual skills. It is 

essential for an autonomous robotic system and it is usually based on engineered solutions. However, 

a promising strategy to achieve high level performance is to mimic the way the human brain 

processes visual information [1,2]. In this advanced seminar the student shall review working models 

of the visual system with particular emphasis on those specifically developed for robotic applications. 
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More precisely, the student shall: 

 Describe what is known about how the brain processes visual information 

 Review the scientific literature about bio-inspired algorithms for feature extraction and 

landmark recognition 

 Evaluate the performance and the biological plausibility of each algorithm 

 Discuss the main advantages and disadvantages in comparison with state-of-the-art 

algorithms 
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Abstract

Human vision still outperforms the best object recognition algorithms there are. It is
believed that mimicking the retinal and visual cortex system will help with building
better performing models. For this, first the biological foundation is analyzed and
then transfered to the basic HMAX model. After that Serre et al.’s extension will
lead to a pretty good representation of the first layers in the visual cortex. Finally
we will discuss the application requirements for self-localization.
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Chapter 1

Introduction

One of the main topics in computer vision is object recognition. Despite many years
of research that brought us all kinds of artificial algorithms, very basic problems
remain nearly unsolvable.
An example would be this simple decision task: Is there a bird in an image? Humans
can answer this after seeing a picture for only very short duration although they
never saw the image before. More surprisingly it also does not matter if a person
knows that exact type of bird or if he had seen it before. Viewing positions and
angles, photometric effects, scene settings and changing body shapes have little effect
on the overall test performance.
It is obvious this is the product of a long evolutionary process that lead to these
high efficient object recognition system. So if it works this well, the naive solution
is to design new algorithms the same way the human visual system works.
To gain an understanding of what these new models should achieve, we are starting
to look at the physiology in chapter 2. After covering the structure of the retina
and the information transport to the brain, the complexity of the visual cortex will
be addressed.
Chapter 3 starts off with some background about what kind of model will be used.
The basis for all of them will be the results of Hubel and Wiesel’s research that is
shortly explained and then used to implement the HMAX model by Riesenhuber and
Poggio. Serre et al. refined this model and also discussed the biological plausibilities.
As the main task of this seminar is to find a biological inspired way for self-
localization, chapter 4 comes back to that and links the acquired models to that
application. It is basically object recognition, but with some boundary conditions
and additional work.
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Chapter 2

Human Visual System

Until today the human vision is the best-known system for recognizing objects and
actions in a scene in a very short time. The basis to understand how it works lies
in the anatomy and physiology. Therefore all the parts that belong to the visual
cortex are described here.

2.1 Retina

The retina is the only source for visual stimuli in mammals. This is an excellent
prerequisite to study neural responses, because all input can easily be controlled.
Figure 2.1 shows a cross section through a human eye. Light enters through the
lens and falls onto the retina on the other side, where it is transfered into neuronal
signals. The foeva is the part of the retina with the highest density of cells and is
the area with which humans most consciously see.

the light continues to shine on them
and do not release a neurotransmitter. 

Although both rods and cones re-
spond to light with a slow hyperpolar-
izing response, they report quite differ-
ent image properties. Rods, detecting
dim light, usually respond to relatively
slow changes. Cones, dealing with
bright signals, can detect rapid light
fluctuations. In both cases, photorecep-
tors begin the process of decomposing

images into separate parts. Both rods
and cones respond to light directly
over them. Thus, their receptive fields
are very narrow. 

An image continues to be broken
into component elements at the first
synapses of the visual pathway, those
between photoreceptors and bipolar
cells. Different bipolar cells have differ-
ent types of receptors for the neuro-
transmitter glutamate, allowing the

cells to respond to photoreceptor input
differently (Figure 7). Some bipolar cells
are tuned to faster and some to slower
fluctuations in the visual signal; some
glutamate receptors resensitize rapidly
and others more gradually. The cells
thus fire either quickly in succession or
relatively slowly in response to the
same amount of stimulation. These re-
ceptors respond to glutamate by acti-
vating what�s known as an OFF path-
way in the visual process, detecting
dark images against a lighter back-
ground. (Recall that photoreceptors
constantly release glutamate unless ex-
posed to light.) Other bipolar cells
have inhibitory glutamate receptors;
in other words, they prevent the bipo-
lar cell from firing when the cell is ex-
posed to the neurotransmitter. These
receptors activate the ON pathway, de-
tecting light images against a darker
background. 

Parallel Processing
The parallel sets of visual channels for
ON (detecting light areas on dark
backgrounds) and OFF (detecting dark
areas on light backgrounds) qualities
of an image are fundamental to our
seeing. Vertebrate vision depends on
perceiving the contrast between im-
ages and their backgrounds. For ex-
ample, we read black letters against a
white background using the OFF chan-
nels that start in the retina. Parallel
bipolar channels transmit inputs to
ganglion cells. Early in development
the architecture of the inner plexiform
layer, full of synapses between bipolar
and ganglion cells, shows that synaptic
connections become segregated in dis-
tinct, parallel pathways. Connections
occur between ON bipolar cells and
ON ganglion cells and also between
OFF bipolar cells and OFF ganglion
cells in demarcated portions of the in-
ner plexiform layer.

If the retina were simply to transmit
opposite-contrast images directly from
the photoreceptors to the brain, the re-
sulting vision would probably be
coarse-grained and blurry. Further pro-
cessing in the retina defines precise
edges to images and allows us to focus
on fine details. The honing of the im-
age starts at the first synaptic level in
the retina, where horizontal cells re-
ceive input from cones. Each horizontal
cell actually receives input from many
cones, so its collection area or receptive
field is large. Horizontal cells� receptive
fields become even broader because
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Figure 2. Diagram of a human eye shows its various structures (left). A thin piece of retina is
enlarged in a photomicrograph (right), revealing its layers. The photoreceptors lie against a
dark row of cells called the pigment epithelium. (Drawing by the author. Except where noted,
photographs by Nicolas Cuenca and the author.)
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Figure 3. Cells in the retina are arrayed in discrete layers. The photoreceptors are at the top of
this rendering, close to the pigment epithelium. The bodies of horizontal cells and bipolar cells
compose the inner nuclear layer. Amacrine cells lie close to ganglion cells near the surface of
the retina. Axon-to-dendrite neural connections make up the plexiform layers separating rows
of cell bodies.

Figure 2.1: Cross section of the human eye [Kolb, 2003]

There is already processing happening in the layers of the retina before the infor-
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mation goes onto the optic nerve. The photo receptive cells, the rods and cones,
generate an analog signal in the outer plexiform layer. This is the input of the
bipolar cells that transport the signal to the inner plexiform layer. With interaction
between bipolar and horizontal cells, the visual system is able to adapt to differ-
ent illuminations. In the inner plexiform layer the dentrites of ganglion cells and
amacrines combine the data from different bipolar cells before it get converted to
action potentials and sent out of the retina.
Overall the information is encoded into a string of about 1 million ganglion axons
that are called the optic nerve. It transports the information to the optic chiasm.

the light continues to shine on them
and do not release a neurotransmitter. 

Although both rods and cones re-
spond to light with a slow hyperpolar-
izing response, they report quite differ-
ent image properties. Rods, detecting
dim light, usually respond to relatively
slow changes. Cones, dealing with
bright signals, can detect rapid light
fluctuations. In both cases, photorecep-
tors begin the process of decomposing

images into separate parts. Both rods
and cones respond to light directly
over them. Thus, their receptive fields
are very narrow. 

An image continues to be broken
into component elements at the first
synapses of the visual pathway, those
between photoreceptors and bipolar
cells. Different bipolar cells have differ-
ent types of receptors for the neuro-
transmitter glutamate, allowing the

cells to respond to photoreceptor input
differently (Figure 7). Some bipolar cells
are tuned to faster and some to slower
fluctuations in the visual signal; some
glutamate receptors resensitize rapidly
and others more gradually. The cells
thus fire either quickly in succession or
relatively slowly in response to the
same amount of stimulation. These re-
ceptors respond to glutamate by acti-
vating what�s known as an OFF path-
way in the visual process, detecting
dark images against a lighter back-
ground. (Recall that photoreceptors
constantly release glutamate unless ex-
posed to light.) Other bipolar cells
have inhibitory glutamate receptors;
in other words, they prevent the bipo-
lar cell from firing when the cell is ex-
posed to the neurotransmitter. These
receptors activate the ON pathway, de-
tecting light images against a darker
background. 

Parallel Processing
The parallel sets of visual channels for
ON (detecting light areas on dark
backgrounds) and OFF (detecting dark
areas on light backgrounds) qualities
of an image are fundamental to our
seeing. Vertebrate vision depends on
perceiving the contrast between im-
ages and their backgrounds. For ex-
ample, we read black letters against a
white background using the OFF chan-
nels that start in the retina. Parallel
bipolar channels transmit inputs to
ganglion cells. Early in development
the architecture of the inner plexiform
layer, full of synapses between bipolar
and ganglion cells, shows that synaptic
connections become segregated in dis-
tinct, parallel pathways. Connections
occur between ON bipolar cells and
ON ganglion cells and also between
OFF bipolar cells and OFF ganglion
cells in demarcated portions of the in-
ner plexiform layer.

If the retina were simply to transmit
opposite-contrast images directly from
the photoreceptors to the brain, the re-
sulting vision would probably be
coarse-grained and blurry. Further pro-
cessing in the retina defines precise
edges to images and allows us to focus
on fine details. The honing of the im-
age starts at the first synaptic level in
the retina, where horizontal cells re-
ceive input from cones. Each horizontal
cell actually receives input from many
cones, so its collection area or receptive
field is large. Horizontal cells� receptive
fields become even broader because
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Figure 2. Diagram of a human eye shows its various structures (left). A thin piece of retina is
enlarged in a photomicrograph (right), revealing its layers. The photoreceptors lie against a
dark row of cells called the pigment epithelium. (Drawing by the author. Except where noted,
photographs by Nicolas Cuenca and the author.)
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Figure 3. Cells in the retina are arrayed in discrete layers. The photoreceptors are at the top of
this rendering, close to the pigment epithelium. The bodies of horizontal cells and bipolar cells
compose the inner nuclear layer. Amacrine cells lie close to ganglion cells near the surface of
the retina. Axon-to-dendrite neural connections make up the plexiform layers separating rows
of cell bodies.

Figure 2.2: Cross section of the retina [Kolb, 2003]

So what is the output of the retina? Ganglion cells are overall connected to many
rods and cones each, but their specific function differs drastically. Mostly there
are cells that fire when the center of their receptive field is illuminated and the
surroundings are not, respectively the other way around (OFF- and ON-center cells).
Additionally there are ganglion cells that are responsible for special low level func-
tions. For example the focusing of the eye or the signal inhibition when the eye or
head moves and would overflow the cortex with neural information (object motion
sensitive cells).
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and this confines their possible
synaptic partners to cells with
processes that occupy those
same levels. Second, different
types of bipolar cells have dif-
ferent numbers and distribu-
tions of synapses, without a
gradation of intermediate forms
between the types. The conclu-
sion reflects more than neu-
roanatomical anecdote; a formal
cluster analysis showed that
cone bipolars segregate into dis-
crete groups based on synapse
number and distribution16,19.
Third, individual bipolar cell
types have characteristic sets of
neurotransmitter receptors and
calcium-binding proteins20–22.
These molecular distinctions
reflect different modes of intra-
cellular signaling and different
types of excitatory and inhibito-
ry inputs from other retinal
neurons, either at their inputs
from cones or from amacrine
cells that synapse on their axon
terminals. At the cone synapses,
different glutamate receptors are
present. At their axon terminals,
different bipolar cells can
receive inhibitory glycinergic or
GABAergic input via one of two
different kinds of GABA recep-
tors. The different receptors and
their channels have differing affinities and rates of activation
and inactivation, which give the cells different postsynaptic
responsiveness22–25.

How are these differences manifested physiologically? First,
the output of the cone photoreceptors is separated into ON and
OFF signals (Fig. 2b). All cone synapses release glutamate, but
bipolar cell types respond to glutamate differently. Some bipo-
lar cells have ionotropic glutamate receptors: glutamate opens a
cation channel, and the cell depolarizes. Other bipolar cells have
a sign-inverting synapse mediated by metabotropic glutamate
receptors, mainly mGluR6; these bipolar cells hyperpolarize in
response to glutamate26,27. As it happens, photoreceptor cells
work ‘backward’ (they hyperpolarize when excited by light,
causing their synapses to release less glutamate), but the ensu-
ing series of sign-reversals is not important for present pur-
poses. When the retina is stimulated by light, one type of bipolar
cell hyperpolarizes, and the other type depolarizes. OFF and
ON bipolar cells occur in approximately equal numbers. The
distinction, created at the first retinal synapse, is propagated
throughout the visual system.

The classes of ON and OFF bipolars are each further subdivid-
ed; there are three to five distinct types of ON and three to five types
of OFF bipolars (Figs. 2c and 3). The purpose of the subdivision
is, at least in part, to provide separate channels for high-frequency
(transient) and low-frequency (sustained) information. Thus, there
are separate ON-transient, ON-sustained, OFF-transient and OFF-
sustained bipolar cells28–30. An elegant series of experiments shows
that the distinction is caused by different glutamate receptors on

the respective OFF bipolar cells; they recover from desensitization
quickly in the transient cells and more slowly in the sustained cells31.

An often-cited reason for splitting the output of the cones into
separate temporal channels is to expand the overall bandwidth of
the system. However, this would imply that the frequency band-
width present at the output of a cone is too broad for transmis-
sion through the cone-to-bipolar synapse, which is uncertain given
the many modes of synaptic transmission available. An alterna-
tive is that fractionating the temporal domain facilitates the cre-
ation of temporally distinct types of ganglion cells (Fig. 4).

An important point here is that there are no dedicated
cones—cones that provide input, say, only to ON bipolars or
only to OFF bipolars (as shown for simplicity in Fig. 2).
Instead, the output of each cone is tapped by several bipolar
cell types to provide many parallel channels, each communi-
cating a different version of the cone’s output to the inner reti-
na (Figs. 3, 4 and 6).

The foundations of color vision
The bipolar cells discussed so far are not chromatically selective,
and this would prevent the retina from discriminating among
wavelengths. A single type of cone, no matter how narrow its
spectral tuning, cannot create color vision. A cone’s synaptic out-
put is a single signal, which can vary only in magnitude. For that
reason, a cone’s signal to the brain is inevitably ambiguous; there
are many combinations of wavelength and intensity that will
evoke the same output from the cone. To specify the wavelength
of a stimulus, the outputs of at least two cones must be compared.

review

Fig. 1. The major cell types of a typical mammalian retina. From the top row to the bottom, photoreceptors,
horizontal cells, bipolar cells, amacrine cells and ganglion cells. Amacrine cells, the most diverse class, have
been studied most systematically in the rabbit3,4, and the illustration is based primarily on work in the rabbit.
Most of the cells are also seen in a variety of mammalian species. The bipolar cells are from work in the rat39;
similar ones have been observed in the rabbit, cat16 and monkey17. For steric reasons, only a subset of the
wide-field amacrine cells is shown.©
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Figure 2.3: Different types of neuroes in the layers of the retina (from top):
photo receptors, horizontal cells, bipolar cells, amacrine cells and ganglion

cells [Masland, 2001]

2.2 Optic Chiasm and Lateral Geniculate Nucleus

In the optic chiasm the signals on the optic nerve are separated into the left and
right half frame of the eye. Then the same side signals from both eyes are sent
together to the lateral geniculate nucleus (LGN).
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Figure 2.4: Overview of the signal flow from the eyes (top) to the visual
cortex (bottom), blue lines indicate the nasal side of retinal signals, red

the temporal ones (Source: wikipedia.org)

The major processes that happen in the LGN have to do with combining the signals
from the left and right eye (3D-representation of scene). This has little effect on the
ability to recognize objects simply because this also works with only one eye.

2.3 Visual Cortex

The human visual cortex is the biggest single part of the brain. This emphasizes the
major role vision has for humans. In about 20 distinct areas the incoming signals
from the retina are processed in a mostly hierarchically manner.
Many different regions were identified to perform distinct tasks. Figure 2.5 is an
example of a map of the connections between these areas. Most of them are bidi-
rectional.
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gangfion cefl toyer and the LGN). pKo several nnnvisual areas (area 7b of somatosensory ranex. penhinsl area 36. the ER. and the hippocampal complex). These areas are
connected by 187 linkages, most of which have been demonstrated to be reciprocal pathways.

(Boussaoud et al., 1990). Another is the connection
between MSTd and PIT, which constrains PIT to be
higher than MSTd. The third is the connection be-
tween AITd and 46, which constrains 46 to be level
with or lower than AITd. All attempts to reposition
these areas led to an even larger number of inconsis-

tencies. Hence, we regard the current version as a
"best fit" to the available data. It is notable that all 3
of these inconsistencies involve relationships that were
already questionable from an earlier stage of the anal-
ysis.

The sheer complexity of Figure 4 makes it difficult

30 Organization of Macaque Visual Conex • Felleman and Van Essen
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Figure 2.5: Visual cortex map from retina (bottom) to hippocampus (top),
most connection are reciprocal [Felleman and Van Essen, 1991]

Typically the visual cortex is separated in multiple major areas which are: the
primary visual cortex V1 or the striate cortex and the extra-striate areas which are
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V2 to V5. The information processing is divided into two pathways: The dorsal
visual pathway deals with calculating the location of objects and is the connection
of the visual cortex with the pariental lobe. The more important one is the ventral
visual pathway that conducts the task of what the eyes see and leads to the temporal
lobe.

Figure 2.6: Ventral (purple) stream going to temporal
lobe and dorsal (green) stream heading to parietal lobe

(Source: scholarpedia.org)

In the first layer V1, the primary visual cortex, each neuron only responds to very
little areas of the visual field (= receptive field of neuron). Basic information about
the orientation and movement of objects are obtained. Beginning with the V2 the
signals are combined for invariance over the whole visual field. From then on the
ventral stream mainly goes along the regions V4 and ends up in the inferior temporal
cortex (IT). In there much the high-level processing happens. With the connection
to the memory areas of the brain, here arise stimuli like recognized objects and faces.
As the information over more and more neurons are combined in higher visual
cortex areas, each neuron represents the content of a larger receptive field. At
the end invariance of many interferences is achieved, which means an object can
be recognized no matter where for example on the input image it is, or what it’s
rotation is.
A model to explain this was developed by Hubel and Wiesel with the use of so called
simple and complex cells. They are described as part of the following chapter.
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Chapter 3

Biologically Inspired
Computational Models of the
Visual System

Building a model for the visual system will be a compromise. Of course one can start
to model every single neuron from the retina to the visual cortex, but this is very
unpractical. So the typical step would be to abstract a certain part of the system
to a functional description. There are basically two ways to do this: Abstraction
top-down and bottom-up.
Top-down means goal-driven, so you could build functional models that abstract
viewing tasks, expectations or reasoning. Obviously this is very complicated, there-
fore bottom-up models, which are stimulus driven, are the way to go.
To realize that kind of model, first of all the signal propagation in the visual system
is discussed. Then, with the research of Hubel and Wiesel as basis, the HMAX
model will be explained. In [Serre et al., 2007] it will be extended to better fit the
biological foundation.

3.1 Basics

3.1.1 Signal Propagation

The only connection of the retina is the optic nerve. It is about 1 million axons
transmitting information in one direction, hence only feed-forward.
Each additional layer of the visual path has back some sort of feedback. As men-
tioned in chapter 2, almost every connection in figure 2.5 is bidirectional. This
makes modeling extremely difficult. Thorpe et al. found out that, even every cortex
area of the visual system has some sort of higher function level feedback, in the first
150 milliseconds it is not active. Therefore for this short time one can assume a
strict feed-forward network. So, despite the fact many features are missing, most
models limit themselves to feed-forward.
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3.1.2 Simple and Complex Cells

The basis for the following model described in section 3.2.1 is an achievement by
Nobel Prize winners Hubel and Wiesel. They discovered two important types of
neurons in the visual cortex: simple and complex cells.
The simple cells respond to light or darkness in a certain area of the visual field,
that is called receptive field. They combine multiple ON- of OFF-cells coming from
the ganglion layer in the retina as one can see in figure 3.1. Thereby orientation
selective neuronal signals in V1 can be modeled.

a) b)

c) d)

Friday, March 22, 2013Figure 3.1: Overlap over multiple ON-center ganglion cells that is
performed by a simple cell (Source: wikipedia.org)

Complex cells on the other hand combine the output of multiple simple cells and are
able to fire when detecting edges or even motion in a specific direction. Figure 3.2
shows a experiment that was performed using a cat as test subject. An electrode
was injected into a complex cell in the visual cortex. If the bright white bar was
moved in the direction of the drawn arrow, the neuron would fire. If the bar stops
or moves the other direction, it would not.

Figure 3.2: Experiment performed by Hubel and Wiesel: Complex cell
of a cat’s visual cortex, the neuron fires only if a short bar is moved in

the arrows direction [Source: youtube.com]

In [Hubel and Wiesel, 1965] the two scientists extended their model with the intro-
duction of so called hypercomplex cells. These are basically cells with a complexity
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beyond the normal complex cells and can be found in higher cortical areas.

3.2 Feed-Forward Models

3.2.1 HMAX model for object recognition

The research of Hubel and Wiesel was not originally intended for object recognition.
It was extended by Riesenhuber and Poggio to form a hierarchical model that uses
simple and complex cells as building blocks: the HMAX model. As mentioned in
3.1.1, as most models this one is strictly feed-forward only.

nature neuroscience  •  volume 2  no 11  •  november 1999 1021

lus (unless the afferents showed no overlap in space
or scale); consequently, excitation of the ‘complex’
cell would increase along with the stimulus size,
even though the afferents show size invariance!
(This is borne out in simulations using a simplified
two-layer model25.) For the MAX mechanism, how-
ever, cell response would show little variation, even as stimulus
size increased, because the cell’s response would be determined
just by the best-matching afferent.

These considerations (supported by quantitative simulations
of the model, described below) suggest that a nonlinear MAX
function represents a sensible way of pooling responses to achieve
invariance. This would involve implicitly scanning (see Discus-
sion) over afferents of the same type differing in the parameter
of the transformation to which responses should be invariant
(for instance, feature size for scale invariance), and then select-
ing the best-matching afferent. Note that these considerations
apply where different afferent to a pooling cell (for instance, those
looking at different parts of space), are likely to respond to dif-
ferent objects (or different parts of the same object) in the visu-
al field. (This is the case with cells in lower visual areas with their
broad shape tuning.) Here, pooling by combining afferents would

mix up signals caused by different stimuli. However, if the affer-
ents are specific enough to respond only to one pattern, as one
expects in the final stages of the model, then it is advantageous
to pool them using a weighted sum, as in the RBF network15,
where VTUs tuned to different viewpoints were combined to
interpolate between the stored views.

MAX-like mechanisms at some stages of the circuitry seem
compatible with neurophysiological data. For instance, when two
stimuli are brought into the receptive field of an IT neuron, that
neuron’s response seems dominated by the stimulus that, when
presented in isolation to the cell, produces a higher firing rate24—
just as expected if a MAX-like operation is performed at the level
of this neuron or its afferents. Theoretical investigations into pos-
sible pooling mechanisms for V1 complex cells also support a
maximum-like pooling mechanism (K. Sakai and S. Tanaka, Soc.
Neurosci. Abstr. 23, 453, 1997).

articles

View-tuned cells

MAX

weighted sum

Simple cells (S1)

Complex cells (C1)

Complex composite cells (C2)

Composite feature cells (S2)

Fig. 2. Sketch of the model. The model was an extension of
classical models of complex cells built from simple cells4,
consisting of a hierarchy of layers with linear (‘S’ units in the
notation of Fukushima6, performing template matching, solid
lines) and non-linear operations (‘C’ pooling units6, perform-
ing a ‘MAX’ operation, dashed lines). The nonlinear MAX
operation—which selected the maximum of the cell’s inputs
and used it to drive the cell—was key to the model’s proper-
ties, and differed from the basically linear summation of
inputs usually assumed for complex cells. These two types of
operations provided pattern specificity and invariance to
translation, by pooling over afferents tuned to different posi-
tions, and to scale (not shown), by pooling over afferents
tuned to different scales.

Fig. 3. Highly nonlinear shape-tuning properties of the MAX mechanism. (a) Experimentally observed responses of IT cells obtained using a ‘simplifi-
cation procedure’26 designed to determine ‘optimal’ features (responses normalized so that the response to the preferred stimulus is equal to 1). In
that experiment, the cell originally responded quite strongly to the image of a ‘water bottle’ (leftmost object). The stimulus was then ‘simplified’ to its
monochromatic outline, which increased the cell’s firing, and further, to a paddle-like object consisting of a bar supporting an ellipse. Whereas this
object evoked a strong response, the bar or the ellipse alone produced almost no response at all (figure used by permission). (b) Comparison of
experiment and model. White bars show the responses of the experimental neuron from (a). Black and gray bars show the response of a model neu-
ron tuned to the stem-ellipsoidal base transition of the preferred stimulus. The model neuron is at the top of a simplified version of the model shown
in Fig. 2, where there were only two types of S1 features at each position in the receptive field, each tuned to the left or right side of the transition
region, which fed into C1 units that pooled them using either a MAX function (black bars) or a SUM function (gray bars). The model neuron was con-
nected to these C1 units so that its response was maximal when the experimental neuron’s preferred stimulus was in its receptive field.
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Figure 3.3: HMAX model by [Riesenhuber and Poggio, 1999]

As one can see in figure 3.3, the model consists of 5 layers. The first four layers
are alternating simple and complex cells. The first stage features a lattice of blocks
that are sensitive to orientation in their respective receptive field. The second layer
creates position invariance as it pools over simple cells with the same orientation
angle. At S2 these complex cell outputs are composed to selective features such as
edges or borders. After another layer that increases invariance over other various
transformations, view-tuned cells can describe abstract high-level features like the
presence of a specific object. Scale invariance is not shown in this figure, but it is
achieved by utilizing different scales of first layer of simple cells and involvement in
the subsequent complex pooling operation.
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These pooling operations performed by the complex cells are implemented using a
nonlinear maximum. This tends to be better than the summation as alternative
because it disregards clutter and interferences.
For object identification, supervised learning of the HMAX model works like this:
An image of the object is inserted into the model. The response of the second
complex cell layer (C2) is recorded and turned into an appropriate view-tuned cell.
But there is a need for learning of objects with many pictures differing in perspective,
illuminance, position and other transformations. This easily leads to a vast amount
of example images for one object.
The two main problems when developing a model for the visual cortex are resolved
pretty good. HMAX can provide a high level of invariance in scale, position, rotation
and other transformation of the object by simply pooling over the respective cell
outputs. Also the selectivity is very high because even on higher layers very sharp
edge and border information is provided.

Performance Tests showed that the HMAX model performs very good with nat-
ural image sets like Caltech101. But [Pinto et al., 2008] argues these images are not
at all representative for the task, this model was developed. They feature objects
from many different viewing angles in various lightning conditions which is good.
This is also stated by the Caltech101 website: ”Most images have little or no clutter.
The objects tend to be centered in each image.”1 On real-world image variation, that
very well include many interferences and will be the main application environment,
the performance is dropping drastically.

3.2.2 Extention of HMAX with Template Matching

A few years later Serre et al. extended the HMAX model with template matching
functionality which is more closer the biological reality in the inferotemporal cortex
([Poggio and Bizzi, 2004]).
The basic assumptions are the same as for the standard HMAX model: the process-
ing is hierarchal (scale and position first, then other transformations), feed-forward
processing only and the receptive field is increasing the higher layer a neuron is. But
one major thing changes now: Learning is assumed to happen almost at every layer
which has to be realized as well as possible.

1http://www.vision.caltech.edu/Image_Datasets/Caltech101

http://www.vision.caltech.edu/Image_Datasets/Caltech101
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MAX operation. That is, the response r of a complex unit

corresponds to the response of the strongest of itsm afferents

ðx1; . . . ; xmÞ from the previous S1 layer such that:

r ¼ max
j¼1...m

xj: ð3Þ

Consider, for instance, the first band: S ¼ 1. For each

orientation, it contains twoS1 maps: The one obtainedusing a

filter of size 7Â 7 and the one obtained using a filter of size

9Â 9 (see Table 1). The maps have the same dimensionality

but they are the outputs of different filters. The C1 unit

responses are computed by subsampling these maps using a

cell grid of size NS ÂNS ¼ 8Â 8. From each grid cell, one

singlemeasurement is obtainedby taking themaximumof all

64 elements. As a last stage, we take amax over the two scales

from within the same spatial neighborhood, by recording
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Fig. 1. System overview: A gray-value input image is first analyzed by an array of S1 units at four different orientations and 16 scales. At the next
C1 layer, the image is subsampled through a local MAX ðMÞ pooling operation over a neighborhood of S1 units in both space and scale, but with the
same preferred orientation. In the next stage, S2 units are essentially RBF units, each having a different preferred stimulus. Note that S2 units are tiled
across all positions and scales. A MAX pooling operation is performed over S2 units with the same selectivity to yield the C2 unit responses.

Figure 3.4: System overview of the model, only 8 scales shown (Source:
[Serre et al., 2007])

The figure 3.4 shows the proposed model with it’s four stages. In the first one, S1, for
an incoming gray-scale image, multiple Gabor filters (16 scales and 4 orientations)
are applied:

F (x, y) = e−
x20+γ

2y20
2σ2 × cos

(
2π

λ
x0

)
mit x0 = x cos Θ + y sin Θ

y0 = −x sin Θ + y cos Θ

Θ = 0◦; 45◦; 90◦; 135◦

The exact parameters can be looked up in the original paper: [Serre et al., 2007].

These filters create 64 different output images. In the next stage, C1, the complex
cells provides the local maximum over position, thus providing shift invariance.
During this operation always two of the 16 scales are combined, leaving a total of
32 images (8 sets with 4 different filter orientations).
These are compared with a vast amount of trained feature patches in S2. This is
the template matching that is new to the model. The determination of the training
patches is simple: A target set of pictures of objects that should be recognized is
acting as input of the model. The feature values are then simply taken from the
C1 output. Later every new image will be compared to all available trained feature
values with a radial bias function (RBF):
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r = e−β||X−Pi||
2

The higher the value r, the better the correspondence to the trained feature.
C2 finally pools over all S2 outputs of the same feature patch and saves only the
maximum. This leaves a vector with the length of the trained patches.

Performance A major limitation could be the S1 and C1 stages that do need
much computational effort. But the overall performance shown in , especially in
comparison with SIFT, proves it being worth it (see figure 3.5).

Fig. 3 shows a comparison between the performance of the
SIFT and the C2 SMFs (both with gentleBoost; similar results
were obtainedwith a linear SVM). Fig. 3a shows a comparison
on the CalTech5 database for different numbers of features
(obtained by selecting a random number of them from the
1,000 available) and Fig. 3b on the CalTech101 database for
different number of training examples. In both cases, the
C2 features outperform the SIFT features significantly. SIFT
features excel in the redetection of a transformed version of a
previously seen example, but may lack selectivity for a more
general categorization task at the basic level.

Number of features and training examples: To investigate
the contribution of the number of features on performance,
we first created a set of 10,000 C2 SMFs and then randomly
selected subsets of various sizes. The results reported are
averaged over 10 independent runs. As Fig. 4a shows,
while the performance of the system can be improved with
more features (e.g., the whole set of 10,000 features),
reasonable performance can already be obtained with 50-
100 features. Features needed to reach the plateau (about

1,000-5,000 features) is much larger than the number used
by current systems (on the order of 10-100 for [17], [26], [45]
and 4-8 for constellation approaches [19], [20], [21]). This
may come from the fact that we only sample the space of
features and do not perform any clustering step like other
approaches (including an earlier version of this system
[34]). We found clustering to be sensitive to the choice of
parameters and initializations, leading to poorer results.

We also studied the influence of the number of training
examples on the performance of the system on the
CalTech101 database. For each object category, we generated
different positive training sets of size 1, 3, 6, 15, and 30 as in
[21] (see Section 3.1.1). As shown in Fig. 4b, the system
achieves error rates comparable to [21] on a few training
examples (less than 15), but its performance still improves
with more examples (where the system by Fei-Fei et al.
seems to be reaching a plateau, see [21]). Results with an
SVM (not shown) are similar, although the performance
tended to be higher on very few training examples (as SVM

seems to avoid overfitting even for one example).
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Fig. 3. Comparison between the SIFT and the C2 features on the CalTech5 for (a) different numbers of features and on the (b) CalTech101 for a
different number of training examples.

Fig. 4. Performance obtained with gentleBoost and different numbers of C2 features on the (a) CalTech5 and on sample categories from the
(b) CalTech101 for a different number of training examples.

Figure 3.5: Performance of model proposed by [Serre et al., 2007]

All performance tests in the paper were conducted while not tuning one single
parameter. These were determined using data about the primary visual cortex.
Improvements are very well possible.
As opposed to having a broad categorization performance, specializing on object
identification is easier. Reference images have to be learned as explained above. In
the process of recognition, the radial basis function will provide a high value just
because it is not a feature but more like a specific object patch.

3.3 Biological plausibility

Simple and Complex Cells Many parts of the HMAX model were designed with
the experiments of Hubel and Wiesel in mind. These only represent a very basic
computational part in the visual cortex. Nevertheless there is the necessity , that it is
possible to realize the two main building blocks of the model, the simple and complex
cells, in neuronal circuits. If that would not be possible, further investigations based
these would be pointless. This was studied in [Serre et al., 2005] with a positive
result.
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No Feedback One of the main problems the presented models have is the strict
limitation to feed-forward networks. As outlined in section 2.3, this is absolutely not
true. There are several attempts to achieve this but they mostly have major deficits.
This is understandable when looking at a functional map of the visual cortex (figure
2.5). The connections reach up to the hippocampus and are even influenced by
cognitive behavior. Also it is arguable if integration of higher brain functions will
lead to better object recognition performance.

Learning While making it possible to reduce the amount of images needed for
training of object recognition models, humans still are way better. They normally
can recognize an object with only one single example as trained reference.
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Chapter 4

Application: Localization

One of many possible applications for object recognition in general is self-localization.
Therefore stationary objects, called landmarks, have to be recognized and associated
with position information.
A simple example: A robot drives through a hallway. There are many different
object to recognize that he knows, like a door. But usually there is not only a single
door but many different. If recognizing more objects in the surrounding area, like
windows, plants or hallway junctions, the possible locations for this kind of specific
occurrences is limited. This is normally implemented using a particle filter that is
for example explained in [Siagian and Itti, 2009].
But what requirements does this have for the object recognition algorithm? First of
all the computational effort should be kept within reasonable limits. Normally the
self-localization is not the primary task when there is the need for it. Secondly the
image of the camera does not focus automatically onto specific separated objects.
There will always be much clutter in the model inputs. One way to overcome this
issue is more extensive training. But this is in conflict with the third requirement
for object recognition algorithms: Ideally it does not need much object examples to
perform well. It is highly unpractical if for indoor navigation every object in each
single room has to be trained with hundreds of images.
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Chapter 5

Conclusion

In summary the rapid scene analysis is well understood till today, but the real visual
system is far more complex then that. Future work has to extend these using more
layers (S3, C3) or a basically different feedback approach.
Current algorithms (like in 3.2.2) do a good job when modeling the physiological
basis up to the inferior temporal cortex. But as one can so on the map of the visual
cortex (figure 2.5) there is still much work to do.
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