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Problem description:

Computer vision aims at the development of algorithms that can match human visual skills. It is
essential for an autonomous robotic system and it is usually based on engineered solutions. However,
a promising strategy to achieve high level performance is to mimic the way the human brain
processes visual information [1,2]. In this advanced seminar the student shall review working models
of the visual system with particular emphasis on those specifically developed for robotic applications.

Task:
More precisely, the student shall:
e Describe what is known about how the brain processes visual information
e Review the scientific literature about bio-inspired algorithms for feature extraction and
landmark recognition
e Evaluate the performance and the biological plausibility of each algorithm
e Discuss the main advantages and disadvantages in comparison with state-of-the-art
algorithms
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Abstract

Human vision still outperforms the best object recognition algorithms there are. It is
believed that mimicking the retinal and visual cortex system will help with building
better performing models. For this, first the biological foundation is analyzed and
then transfered to the basic HMAX model. After that Serre et al.’s extension will
lead to a pretty good representation of the first layers in the visual cortex. Finally
we will discuss the application requirements for self-localization.
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Chapter 1

Introduction

One of the main topics in computer vision is object recognition. Despite many years
of research that brought us all kinds of artificial algorithms, very basic problems
remain nearly unsolvable.

An example would be this simple decision task: Is there a bird in an image? Humans
can answer this after seeing a picture for only very short duration although they
never saw the image before. More surprisingly it also does not matter if a person
knows that exact type of bird or if he had seen it before. Viewing positions and
angles, photometric effects, scene settings and changing body shapes have little effect
on the overall test performance.

It is obvious this is the product of a long evolutionary process that lead to these
high efficient object recognition system. So if it works this well, the naive solution
is to design new algorithms the same way the human visual system works.

To gain an understanding of what these new models should achieve, we are starting
to look at the physiology in chapter 2. After covering the structure of the retina
and the information transport to the brain, the complexity of the visual cortex will
be addressed.

Chapter 3 starts off with some background about what kind of model will be used.
The basis for all of them will be the results of Hubel and Wiesel’s research that is
shortly explained and then used to implement the HMAX model by Riesenhuber and
Poggio. Serre et al. refined this model and also discussed the biological plausibilities.
As the main task of this seminar is to find a biological inspired way for self-
localization, chapter 4 comes back to that and links the acquired models to that
application. It is basically object recognition, but with some boundary conditions
and additional work.



Chapter 2

Human Visual System

Until today the human vision is the best-known system for recognizing objects and
actions in a scene in a very short time. The basis to understand how it works lies
in the anatomy and physiology. Therefore all the parts that belong to the visual
cortex are described here.

2.1 Retina

The retina is the only source for visual stimuli in mammals. This is an excellent
prerequisite to study neural responses, because all input can easily be controlled.
Figure 2.1 shows a cross section through a human eye. Light enters through the
lens and falls onto the retina on the other side, where it is transfered into neuronal
signals. The foeva is the part of the retina with the highest density of cells and is
the area with which humans most consciously see.
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Figure 2.1: Cross section of the human eye [Kolb, 2003]

There is already processing happening in the layers of the retina before the infor-
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mation goes onto the optic nerve. The photo receptive cells, the rods and cones,
generate an analog signal in the outer plexiform layer. This is the input of the
bipolar cells that transport the signal to the inner plexiform layer. With interaction
between bipolar and horizontal cells, the visual system is able to adapt to differ-
ent illuminations. In the inner plexiform layer the dentrites of ganglion cells and
amacrines combine the data from different bipolar cells before it get converted to
action potentials and sent out of the retina.

Overall the information is encoded into a string of about 1 million ganglion axons
that are called the optic nerve. It transports the information to the optic chiasm.
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Figure 2.2: Cross section of the retina [Kolb, 2003]

So what is the output of the retina? Ganglion cells are overall connected to many
rods and cones each, but their specific function differs drastically. Mostly there
are cells that fire when the center of their receptive field is illuminated and the
surroundings are not, respectively the other way around (OFF- and ON-center cells).
Additionally there are ganglion cells that are responsible for special low level func-
tions. For example the focusing of the eye or the signal inhibition when the eye or
head moves and would overflow the cortex with neural information (object motion
sensitive cells).
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Figure 2.3: Different types of neuroes in the layers of the retina (from top):
photo receptors, horizontal cells, bipolar cells, amacrine cells and ganglion
cells [Masland, 2001]

2.2 Optic Chiasm and Lateral Geniculate Nucleus

In the optic chiasm the signals on the optic nerve are separated into the left and
right half frame of the eye. Then the same side signals from both eyes are sent
together to the lateral geniculate nucleus (LGN).
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Figure 2.4: Overview of the signal flow from the eyes (top) to the visual
cortex (bottom), blue lines indicate the nasal side of retinal signals, red
the temporal ones (Source: wikipedia.org)

The major processes that happen in the LGN have to do with combining the signals
from the left and right eye (3D-representation of scene). This has little effect on the
ability to recognize objects simply because this also works with only one eye.

2.3 Visual Cortex

The human visual cortex is the biggest single part of the brain. This emphasizes the
major role vision has for humans. In about 20 distinct areas the incoming signals
from the retina are processed in a mostly hierarchically manner.

Many different regions were identified to perform distinct tasks. Figure 2.5 is an
example of a map of the connections between these areas. Most of them are bidi-
rectional.
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Figure 2.5: Visual cortex map from retina (bottom) to hippocampus (top),
most connection are reciprocal [Felleman and Van Essen, 1991]

Typically the visual cortex is separated in multiple major areas which are: the
primary visual cortex V1 or the striate cortex and the extra-striate areas which are
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V2 to V5. The information processing is divided into two pathways: The dorsal
visual pathway deals with calculating the location of objects and is the connection
of the visual cortex with the pariental lobe. The more important one is the ventral
visual pathway that conducts the task of what the eyes see and leads to the temporal
lobe.

Figure 2.6: Ventral (purple) stream going to temporal
lobe and dorsal (green) stream heading to parietal lobe
(Source: scholarpedia.org)

In the first layer V1, the primary visual cortex, each neuron only responds to very
little areas of the visual field (= receptive field of neuron). Basic information about
the orientation and movement of objects are obtained. Beginning with the V2 the
signals are combined for invariance over the whole visual field. From then on the
ventral stream mainly goes along the regions V4 and ends up in the inferior temporal
cortex (IT). In there much the high-level processing happens. With the connection
to the memory areas of the brain, here arise stimuli like recognized objects and faces.
As the information over more and more neurons are combined in higher visual
cortex areas, each neuron represents the content of a larger receptive field. At
the end invariance of many interferences is achieved, which means an object can
be recognized no matter where for example on the input image it is, or what it’s
rotation is.

A model to explain this was developed by Hubel and Wiesel with the use of so called
simple and complex cells. They are described as part of the following chapter.



Chapter 3

Biologically Inspired
Computational Models of the
Visual System

Building a model for the visual system will be a compromise. Of course one can start
to model every single neuron from the retina to the visual cortex, but this is very
unpractical. So the typical step would be to abstract a certain part of the system
to a functional description. There are basically two ways to do this: Abstraction
top-down and bottom-up.

Top-down means goal-driven, so you could build functional models that abstract
viewing tasks, expectations or reasoning. Obviously this is very complicated, there-
fore bottom-up models, which are stimulus driven, are the way to go.

To realize that kind of model, first of all the signal propagation in the visual system
is discussed. Then, with the research of Hubel and Wiesel as basis, the HMAX
model will be explained. In [Serre et al., 2007] it will be extended to better fit the
biological foundation.

3.1 Basics

3.1.1 Signal Propagation

The only connection of the retina is the optic nerve. It is about 1 million axons
transmitting information in one direction, hence only feed-forward.

Each additional layer of the visual path has back some sort of feedback. As men-
tioned in chapter 2, almost every connection in figure 2.5 is bidirectional. This
makes modeling extremely difficult. Thorpe et al. found out that, even every cortex
area of the visual system has some sort of higher function level feedback, in the first
150 milliseconds it is not active. Therefore for this short time one can assume a
strict feed-forward network. So, despite the fact many features are missing, most
models limit themselves to feed-forward.
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3.1.2 Simple and Complex Cells

The basis for the following model described in section 3.2.1 is an achievement by
Nobel Prize winners Hubel and Wiesel. They discovered two important types of
neurons in the visual cortex: simple and complex cells.

The simple cells respond to light or darkness in a certain area of the visual field,
that is called receptive field. They combine multiple ON- of OFF-cells coming from
the ganglion layer in the retina as one can see in figure 3.1. Thereby orientation
selective neuronal signals in V1 can be modeled.

Figure 3.1: Overlap over multiple ON-center ganglion cells that is
performed by a simple cell (Source: wikipedia.org)

Complex cells on the other hand combine the output of multiple simple cells and are
able to fire when detecting edges or even motion in a specific direction. Figure 3.2
shows a experiment that was performed using a cat as test subject. An electrode
was injected into a complex cell in the visual cortex. If the bright white bar was
moved in the direction of the drawn arrow, the neuron would fire. If the bar stops
or moves the other direction, it would not.

Figure 3.2: Experiment performed by Hubel and Wiesel: Complex cell
of a cat’s visual cortex, the neuron fires only if a short bar is moved in
the arrows direction [Source: youtube.com]

In [Hubel and Wiesel, 1965] the two scientists extended their model with the intro-
duction of so called hypercomplex cells. These are basically cells with a complexity
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beyond the normal complex cells and can be found in higher cortical areas.

3.2 Feed-Forward Models

3.2.1 HMAX model for object recognition

The research of Hubel and Wiesel was not originally intended for object recognition.
It was extended by Riesenhuber and Poggio to form a hierarchical model that uses
simple and complex cells as building blocks: the HMAX model. As mentioned in
3.1.1, as most models this one is strictly feed-forward only.

@ e @ View-tuned cells

Complex composite cells (C2)

Composite feature cells (S2)

Complex cells (C1)

Simple cells (S1)

weighted sum
=== MAX

Figure 3.3: HMAX model by [Riesenhuber and Poggio, 1999

As one can see in figure 3.3, the model consists of 5 layers. The first four layers
are alternating simple and complex cells. The first stage features a lattice of blocks
that are sensitive to orientation in their respective receptive field. The second layer
creates position invariance as it pools over simple cells with the same orientation
angle. At S2 these complex cell outputs are composed to selective features such as
edges or borders. After another layer that increases invariance over other various
transformations, view-tuned cells can describe abstract high-level features like the
presence of a specific object. Scale invariance is not shown in this figure, but it is
achieved by utilizing different scales of first layer of simple cells and involvement in
the subsequent complex pooling operation.
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These pooling operations performed by the complex cells are implemented using a
nonlinear maximum. This tends to be better than the summation as alternative
because it disregards clutter and interferences.

For object identification, supervised learning of the HMAX model works like this:
An image of the object is inserted into the model. The response of the second
complex cell layer (C2) is recorded and turned into an appropriate view-tuned cell.
But there is a need for learning of objects with many pictures differing in perspective,
illuminance, position and other transformations. This easily leads to a vast amount
of example images for one object.

The two main problems when developing a model for the visual cortex are resolved
pretty good. HMAX can provide a high level of invariance in scale, position, rotation
and other transformation of the object by simply pooling over the respective cell
outputs. Also the selectivity is very high because even on higher layers very sharp
edge and border information is provided.

Performance Tests showed that the HMAX model performs very good with nat-
ural image sets like Caltech101. But [Pinto et al., 2008] argues these images are not
at all representative for the task, this model was developed. They feature objects
from many different viewing angles in various lightning conditions which is good.
This is also stated by the Caltech101 website: "Most images have little or no clutter.
The objects tend to be centered in each image.”! On real-world image variation, that
very well include many interferences and will be the main application environment,
the performance is dropping drastically.

3.2.2 Extention of HMAX with Template Matching

A few years later Serre et al. extended the HMAX model with template matching
functionality which is more closer the biological reality in the inferotemporal cortex
([Poggio and Bizzi, 2004]).

The basic assumptions are the same as for the standard HMAX model: the process-
ing is hierarchal (scale and position first, then other transformations), feed-forward
processing only and the receptive field is increasing the higher layer a neuron is. But
one major thing changes now: Learning is assumed to happen almost at every layer
which has to be realized as well as possible.

http://www.vision.caltech.edu/Image_Datasets/Caltech101
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Small Scale

Large Scale

Input Image S1 c1 S2 C2

Figure 3.4: System overview of the model, only 8 scales shown (Source:
[Serre et al., 2007])

The figure 3.4 shows the proposed model with it’s four stages. In the first one, S, for
an incoming gray-scale image, multiple Gabor filters (16 scales and 4 orientations)
are applied:

m2+’72y2 27T
F(z,y)=e¢" Y27 X cos (Txo)

mit To = xcos© + ysin ©
Yo = —xsin © + y cos ©
O = 0°;45°,90°; 135°

The exact parameters can be looked up in the original paper: [Serre et al., 2007].

These filters create 64 different output images. In the next stage, C;, the complex
cells provides the local maximum over position, thus providing shift invariance.
During this operation always two of the 16 scales are combined, leaving a total of
32 images (8 sets with 4 different filter orientations).

These are compared with a vast amount of trained feature patches in Sy. This is
the template matching that is new to the model. The determination of the training
patches is simple: A target set of pictures of objects that should be recognized is
acting as input of the model. The feature values are then simply taken from the
C} output. Later every new image will be compared to all available trained feature
values with a radial bias function (RBF):
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The higher the value r, the better the correspondence to the trained feature.
Cs finally pools over all Sy outputs of the same feature patch and saves only the
maximum. This leaves a vector with the length of the trained patches.

Performance A major limitation could be the S; and (' stages that do need
much computational effort. But the overall performance shown in , especially in
comparison with SIFT, proves it being worth it (see figure 3.5).
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Figure 3.5: Performance of model proposed by [Serre et al., 2007]

All performance tests in the paper were conducted while not tuning one single
parameter. These were determined using data about the primary visual cortex.
Improvements are very well possible.

As opposed to having a broad categorization performance, specializing on object
identification is easier. Reference images have to be learned as explained above. In
the process of recognition, the radial basis function will provide a high value just
because it is not a feature but more like a specific object patch.

3.3 Biological plausibility

Simple and Complex Cells Many parts of the HMAX model were designed with
the experiments of Hubel and Wiesel in mind. These only represent a very basic
computational part in the visual cortex. Nevertheless there is the necessity , that it is
possible to realize the two main building blocks of the model, the simple and complex
cells, in neuronal circuits. If that would not be possible, further investigations based
these would be pointless. This was studied in [Serre et al., 2005] with a positive
result.
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No Feedback One of the main problems the presented models have is the strict
limitation to feed-forward networks. As outlined in section 2.3, this is absolutely not
true. There are several attempts to achieve this but they mostly have major deficits.
This is understandable when looking at a functional map of the visual cortex (figure
2.5). The connections reach up to the hippocampus and are even influenced by
cognitive behavior. Also it is arguable if integration of higher brain functions will
lead to better object recognition performance.

Learning While making it possible to reduce the amount of images needed for
training of object recognition models, humans still are way better. They normally
can recognize an object with only one single example as trained reference.
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Chapter 4

Application: Localization

One of many possible applications for object recognition in general is self-localization.
Therefore stationary objects, called landmarks, have to be recognized and associated
with position information.

A simple example: A robot drives through a hallway. There are many different
object to recognize that he knows, like a door. But usually there is not only a single
door but many different. If recognizing more objects in the surrounding area, like
windows, plants or hallway junctions, the possible locations for this kind of specific
occurrences is limited. This is normally implemented using a particle filter that is
for example explained in [Siagian and Itti, 2009).

But what requirements does this have for the object recognition algorithm? First of
all the computational effort should be kept within reasonable limits. Normally the
self-localization is not the primary task when there is the need for it. Secondly the
image of the camera does not focus automatically onto specific separated objects.
There will always be much clutter in the model inputs. One way to overcome this
issue is more extensive training. But this is in conflict with the third requirement
for object recognition algorithms: Ideally it does not need much object examples to
perform well. It is highly unpractical if for indoor navigation every object in each
single room has to be trained with hundreds of images.
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Chapter 5

Conclusion

In summary the rapid scene analysis is well understood till today, but the real visual
system is far more complex then that. Future work has to extend these using more
layers (S3, C3) or a basically different feedback approach.

Current algorithms (like in 3.2.2) do a good job when modeling the physiological
basis up to the inferior temporal cortex. But as one can so on the map of the visual
cortex (figure 2.5) there is still much work to do.
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