Oculus Rift Retina Display

Report of Practical Training

submitted by
Huaijiang Zhu
(03639539)

Supervisor: Prof. Dr. J6rg Conradt, Dipl. Nicolai Waniek

Page i of ii

Contents

Chapter 1: Project Background

Chapter 2: Development Tools

2.1 Oculus Rift Development Kit 1 (DK1)

2.2 Event Based Dynamic Vision System (eDVS)

2.3 OpenGL

Chapter 3: Implementation of the Project

3.1 Development Environment Setup

3.2 Visualization of the eDVS Data

3.3 Integration of eDVS with the Oculus Rift

3.4 Recording/Replaying Function and Time Synchronization
3.5 Attachment

Chapter 4: Experiments

4.1 Stereo Vision

4.2 Minimal Requirement of Information Determination
Chapter 5: Summary of the Project

Appendix A: Experiment Results for Stereo Vision
Appendix B: Sources for Figures

Bibliography

Page ii of ii

© 00 N N OO0 o0~ B WODNMNDNDDN =

- = -
N = O

Chapter 1: Project Background

From July 28, 2014 to September 26, 2014 | did my practical training in the Neuroscientific
System Theory Group affiliated to the Chair of Automatic Control Engineering at TUM under
the supervision of Professor Dr. J6rg Conradt and Mr. Dipl. Nicolai Waniek. During my
internship, | carried out the project of Oculus Rift Retina Display together with my colleague
Mr. Zhejun Zhang.

The goal of this project is to determine the minimal requirement of information for a human
being to navigate safely and correctly in unknown environments.

This is important in the development of retinal prothesis, because the volume of data that
need to be transmitted can affect not only the latency of the whole system but also the
amount of the heat generated on the implemented chip. To avoid the possibility of thermal
damage to the retina (Piyathaisere et al., 2002), the volume of data should be minimized.

The virtual reality headset Oculus Rift and eDVS (Event Based Dynamic Vision Systems) are
used to answer this particular question. The eDVS is well suited for this project because
unlike conventional camera it only sends the local pixel-level changes caused by movement
instead of redundant data of the whole frame.! The data provided by eDVS will be displayed
by an interface software on the Oculus Rift headset. Thus, psychophysical experiments can
be performed in order to investigate how detailed the information must be so that the
navigation is possible.

1 http://www.nst.ei.tum.de/projekte/edvs/

Page 1 of 12

http://www.nst.ei.tum.de/projekte/edvs/

Chapter 2: Development Tools

The main task of this project is to design a system which can simulate the visual experience
of patients implanted with retinal prothesis. To achieve that, following tools were applied.

2.1 Oculus Rift Development Kit 1 (DK1)

The Oculus Rift DK1 is a virtual reality head-mounted display developed by Oculus VR. It
provides an immersive experience in an approximately 110° field of view, using two lens in a
head-mounted display that combine to form a 1280 x 800 resolution. Each eye sees 640 x
800 pixel.(Lang, 2012)

/ Oculus

0 Oculus Field of View Comparison
\

FIGURE 2.1: FIELD OF VIEW OCULUS RIFT

The distortion and the chromatic aberration caused by the lens will be corrected in an
approach called SDK Distortion Rendering. While doing so, the Oculus SDK takes care of all
necessary calculations when generating the distortion mesh.

2.2 Event Based Dynamic Vision System (eDVS)

The Event Based Dynamic Vision System is a small embedded system consisting of an ARM7
micro controller with a DVS sensor.? Instead of wastefully sending entire images at fixed
frame rates, only the local pixel-level changes caused by movement in a scene are
transmitted — at the time they occur. The result is a stream of events at microsecond time
resolution, equivalent to or better than conventional high-speed vision sensors running at
thousands of frames per second. Power, data storage and computational requirements are
also drastically reduced, and sensor dynamic range is increased by orders of magnitude due
to the local processing.?

In this project, an existing library written by David Weikersdorfer, an alumni of NST, will be
applied to interface with the Oculus Rift. A stream of events packed in a structure consisting

2 http://siliconretina.ini.uzh.ch/

3 http://www.nst.ei.tum.de/projekte/edvs/

Page 2 of 12

http://siliconretina.ini.uzh.ch/
http://www.nst.ei.tum.de/projekte/edvs/

of abscissa, ordinate, polarity and time can be obtained through the universal asynchronous
receiver/transmitter (UART). The resolution of the DVS sensor used in the project is 128 x 128
pixels.

DVS sensor chip
(lens removed)

Lens

Capacitorsfor
Bias setup

Microcontroller
and system clock

52mm

UART, TWI, and
SPl connectors

Power Management —————>
23mm
FIGURE 2.2: EVENT BASED DYNAMIC VISION SYSTEM

2.3 OpenGL

OpenGL (Open Graphics Library) is a cross-language, multi-platform application
programming interface (API) for rendering 2D and 3D vector graphics. The APl is typically
used to interact with a graphics processing unit (GPU), to achieve hardware-accelerated
rendering. To do that, OpenGL takes a sequence of steps as the Rendering Pipeline. The
general steps are shown in the Figure 2.3. (Shreiner, Sellers, Kessenich, & Licea-Kane, 2013)

Per-Vertex
Operations
A/ , Per-Fragment
> luat Rast ti .
Evaluator Primitive asterization Operationes Frame Buffer
~ Assembly ;)
Toxture
Memory
N J Pixel
- Operations

FIGURE 2.3: RENDERING PIPELINE OF OPENGL
Page 3 of 12

Chapter 3: Implementation of the Project

The project is a team work with my colleague Zhejun Zhang, our supervisors and other
students who offered help. In this chapter, | will focus mostly on my work and experience
during the practical training.

3.1 Development Environment Setup

The project requires integration of various code libraries which have the best support under
Linux platform. So after a number of failed attempts to modify the related libraries to work
under Windows/Mac OS X, my colleague Zhejun Zhang and | decided to develop the
software under Ubuntu 14.04 despite the fact that we had already started to learn and set up
OpenGL environment under other platforms for a couple of days.

While Zhejun Zhang was reading and trying to employ the existing eDVS interfacing libraries
in our program, | engaged myself in OpenGL and Oculus Rift SDK.

Due to the convenient package management of Linux, it didn’t take me much time to install
the library dependencies and to set up the development environment of OpenGL. After
reading several tutorials on the Internet, | wrote my first OpenGL program—drawing a red
triangle with Eclipse 3.8. However, the Oculus Rift SDK was relatively hard for a beginner like
me to learn in a short time, since Oculus VR provided a very sophisticated demo-program
but a less detailed document along with it.

My colleague Zhejun Zhang did some research on the Internet and found a simple program
on the Oculus Developer Forum. This program discarded the complicated modeling as well
as the user controlling part of a full functional game. Instead, it focused only on the basic
usage of the Oculus Rift SDK by simply demonstrating a rotating cube. Although this
program used a less modern way of OpenGL to draw the entities and still needed to be
rewritten into OpenGL 3.3 style, it was already a good starting point for the whole project.

3.2 Visualization of the eDVS Data

To visualize the data from eDVS, OpenGL was chosen as the main tool because of its cross-
platform compatibility for the Oculus Rift SDK. As in Section 2.2 described, every single
eDVS event is packed in a structure consisting of abscissa, ordinate, polarity and time. The
task was to map these events to OpenGL vertices and to displaying them in a way that
human beings can understand.

The first thing | did is to read the programs that other students wrote before, using Matlab
and Qt-Library. Then | found that the polarity of an event was interpreted differently in these
two programs. While in the Qt-program the pixel would be set to white if the polarity was 1
and black if it's 0, the Matlab program changed the hue of it. So | asked my supervisor
Nicolai Waniek, and he explained that the polarity shows the on/off state of the events, but
its time scale is too short for human beings to understand what really happened. Therefore, a
fading/washing out effect must be added so that a event lasts longer on the screen. The
changing hue in the Matlab program actually did this job and there was an another equivalent
function in the Qt-program. Furthermore, since the eDVS data don’t contain any information
of color, it makes no significant difference in which color the event is displayed.

The other part was to map the 128 x 128 pixels of eDVS data to the OpenGL vertices. In
OpenGL the vertex data are usually transmitted to the shader program in form of a one-
dimensional vertex array. Therefore, the two-dimensional coordinates of a point from
cartesian system must be converted. The existing program gave a simple and intuitive
solution: See the pixels as a 128*128 matrix and then connect every row of it. Thus, the
pixels would be put into a one-dimensional array and the index of each element would be
calculated as the addition of abscissa multiplied by 128 and the ordinate.

4 https://developer.oculusvr.com/forums/viewtopic.php?{=20&t=8680
Page 4 of 12

https://developer.oculusvr.com/forums/viewtopic.php?f=20&t=8680

Since the eDVS sensors were not available at the beginning of the project, | used a text file of
recorded data from another project for test. During the test | found that the program
displayed the events much slower than it should be. After my supervisor reminded me, |
realized that a rendering loop of OpenGL takes normally much longer time than a eDVS
event. So it’s necessary to accumulate a quantity of events and display them in one

rendering loop. But this involved another problem: the recording speed and displaying speed
of the events would not be synchronized if the accumulated number of events was not
chosen properly. And | decided to deal with it after testing the program with real eDVS
sensors, since only by that can | know how the eDVS data would be recorded.

For further use of this program in the project | rewrote it into a C++ Class after the test. To
achieve that, | read some tutorials and learned the basics of the implementation of OOP in
C++. The class named eDVSGL stores all the variables and can be easily instantiated with
the external environment, no matter whether it’s a Oculus Rift demonstration or a normal
OpenGL program. With the member function in it, the eDVS events data can be converted
and stored in OpenGL-specified form for the visualization later on. When other people need
to use this program, they don’t have to deal with the complicated codes. Instead, 4 lines of
initializing, setting up, updating events and drawing will be enough.

3.3 Integration of eDVS with the Oculus Rift

After | succeeded in visualizing the eDVS data with OpenGL, the next step was to integrate it
with the Oculus Rift SDK, so that an interface software could allow users to see the
visualization through the Oculus Rift Headset.

To add Oculus support to an OpenGL program, following steps are required:
1. Initialize LibOVR.
Enumerate Oculus devices, create the ovrHmd object, and start sensor input.

Integrate head-tracking into the application’s view and movement code.

2

3

4. Initialize rendering for the HMD.

5. Modify application frame rendering to integrate HMD support and proper frame timing.
6

Customize Ul screens to work well inside of the headset.
(Oculus VR, 2014)

With the demo-program found in the Oculus Developer Forum, | completed the first 4 steps
without much trouble. The fifth step was a little bit tricky for the project because we were
required to integrate two instead of one eDVS sensors as the source of input, while the demo-
program had only one. My intuitive idea was to create another object of the eDVSGL class
and run the drawing function separately in two different fields of view. But one field of view
showed constantly blank background after the modification, although debugging indicated
that the codes | added were executed without problem. Then | started to check the codes
line by line and finally found out the problem after a whole day.

The window-creating library GLFW applied in the project uses double-buffering, which means
the developer has to swap the front and back buffer when the entire frame has been
rendered.® Since there were two fields of view in my program, the buffers should be
swapped respectively in each eye. This wasn’t done in the demo-program since it only
rendered from one source.

Another problem in the demo-program was that it modified the model-view and projection
matrix according to the data from the sensors of Oculus Rift so that the image changed itself

5 http://www.glfw.org/docs/3.0/quick.html

Page 5 of 12

http://www.glfw.org/docs/3.0/quick.html

when users move their heads, which, in our project, was not required, since the eDVS
sensors would be mounted on the Oculus Rift and move with it. This was easily solved by
setting the model-view matrix to an identity matrix.

3.4 Recording/Replaying Function and Time Synchronization

In order to conduct the psychophysical experiments required for the project, a recording/
replaying function should be integrated to the program. This was implemented with the file
input/output function of C - fscanf and fprintf. In our program, a function will be called to
obtain events in every rendering loop under recording mode. These events will be stored
simultaneously in two plain text files, for left and right eye respectively. Since the rendering
speed varies massively between different CPU/GPUs, a rendering loop can take much longer
time on an old PC. This consequently increases the time interval between two requests of
events.

As in Section 3.2 described, when the program reads from files of recorded data, a fixed
number of events will be accumulated and displayed in every rendering loop. This can cause
a problem of time synchronization for reasons above. For example, when a relatively faster
computer records the data, the time interval between every 500 events can be very short -
for instance, 10 microseconds. But a slower computer might demand 30 microseconds to
finish a rendering loop. When it still accumulates 500 events in every loop, the displayed
footage will be approximately three times slower. Therefore, an accumulation of fixed number
is not practical for this situation.

| solved this problem by accumulating events in a time interval equivalent to the duration of
the rendering loop. Although each rendering loop on the same computer also slightly differs
in duration for different complexity due to the dynamic scene, we can set it to a fixed time by
active waiting.

3.5 Attachment

My colleague Zhejun Zhang designed a simple attachment which can mount the two eDVS
into the Oculus Rift Headset. This consists mainly of a polycarbonate plate remodeled by a
laser cutter. A sketch of this is shown below.

FIGURE 3.1 SKETCH OF THE ATTACHMENT

Page 6 of 12

Chapter 4: Experiments

After a series of debugging, the system of two eDVS working cooperatively with the Oculus
Rift could present the scene captured by the sensors so that related experiments could be
performed.

4.1 Stereo Vision

At the project status meeting, our supervisor Professor Dr. J6érg Conradt pointed out some
problems mainly focusing on the stereo vision.

Stereo vision involves two processes: The fusion of features observed by two (or more) eyes
and the reconstruction of their three-dimensional preimage. (Forsyth & Ponce, 2012)

In our project, an algorithmic fusion was not necessary, because the scene would be
captured with two eDVS respectively and then directly displayed in front of two eyes. To
acquire a good visual experience of stereo fusion, some parameters like inter-pupillary
distance and size of the field of view should be adjusted individually. While the human brain
will complete the fusion during the process, it is hard to calculate the proper parameters
quantitatively. Therefore, a trial-and-error method was applied.

Modification of the related parameters can be easily done by changing the OpenGL viewport
and model-view matrix. With the keyboard controlling function developed by Zhejun Zhang,
users can adjust the parameters conveniently and save/load their settings later on.

To verify if the stereo vision was achieved after parameter adjustment, an experiment was
carried out. For each experimental run, subjects saw two recorded footages successively in
which a single line was located in different distances from the shooting point. A sample of the
footage is shown below.

FIGURE 4.1 AN EXAMPLE OF THE EXPERIMENT FOOTAGE

Page 7 of 12

After that, the subjects were asked in which of the footages the line was closer (or at the
same distance). Among total 20 trials only 3 of them were misjudged. This occurred when the
line located at almost the same distance.

Detailed results of the experiment can be found in Appendix A.

4.2 Minimal Requirement of Information Determination

The initial target of the project was to determine the minimal requirement of the information
for a human being to navigate safely and correctly in unknown environments. Given that the
portability of the system was limited by the power supply and the PC, a thorough and
systematic experiment could not be performed at the moment. Instead, we did some local
tests to verify subjects’ capability of completing everyday tasks, including picking up a
mobile phone on the desk and tossing paper into trash can.

The core parameter that would be continually readjusted during the tests was the update
interval of the events. As in Section 2.2 described, eDVS events were caused by movement.
In a dynamic scene, the same pixel can be triggered multiple times within several
milliseconds. These events might be redundant for the navigation. In our program, events will
be filtered by a parameter called update interval first. This parameter controls after how long
the already triggered pixel can be renewed again. Repetitive events of the same pixel
occurred in this time interval will be ignored.

The optimal value of the update interval turned out to be around 1000 microseconds
according to our tests. Under this value, the result of the tests were positive. With 5-10
minutes’ customization and adaption of the system, most participants were able to complete
these tests flawlessly.

Page 8 of 12

Chapter 5: Summary of the Project

With the practical training, I’ve learned how to apply OpenGL to visualize data, got familiar
with the basics of Oculus Rift and eDVS, and most importantly learned how to work with
others as a team.

After nine weeks of work, the major part of the project is accomplished. The Oculus Rift
Retina Display system can now present dynamic scenes with adjustable parameters and
simulate the visual experience of the patients implanted with retinal prothesis. Without the
help of my colleague Mr. Zhejun Zhang, our supervisors and the helping hands from other
students, it can’t be possible to achieve this in such a short period.

However, there is still much room for improvement.

A portable solution of the whole system should be provided. For instance, with wireless data
transmission and portable battery as power supply. Thus, a more thorough and systematic
experiment can be performed.

The stereo vision is a major issue in this project. Although the experiment gave positive
results, we can still not rule out the possibility that the size of the object played a role in the
sense of depth during the experiment. Furthermore, we found that the fusion of stereo vision
only worked in a certain range of distance, probably due to the fixed distance between the
two eDVS.

Still, I’'m convinced that this system can help the neuroscientists in the future development of
retinal prothesis with the mentioned improvement above.

Page 9 of 12

Appendix A: Experiment Results for Stereo Vision

Distance A (cm)

47.5
85
72.5
110
60
72.5
85
110
60

110

Distance A (cm)

60

97.5

72.5

122.5

60

110

47.5

122.5

85

110

Distance B (cm)

60
97.5
72.5

85

110
97.5
97.5
47.5
72.5

122.5

TABLE A.1: EXPERIMENT RESULTS OF SUBJECT 1

Distance B (cm)

85

72.5

85

110

72.5

85

60

97.5

85

97.5

TABLE A.2: EXPERIMENT RESULTS OF SUBJECT 2

Page 10 of 12

Correct Judgement

YES
YES
NO
YES
YES
YES
YES
YES
YES
YES

Correct Judgement

YES
YES
YES
YES
YES
YES
NO
YES
NO
YES

Appendix B: Sources for Figures

Figure 2.1: Field of View Oculus Rift:

https://developer.oculusvr.com/forums/viewtopic.php?f=26&t=11505

Figure 2.2: Event Based Dynamic Vision System:

https://wiki.lsr.ei.tum.de/nst/programming/edvsgettingstarted

Figure 2.3: Rendering Pipeline of OpenGL:
http://en.wikipedia.org/wiki/OpenGL

Page 11 of 12

Bibliography

Forsyth, D. A., & Ponce, J. (2012). Stereopsis Computer vision: a modern approach (Second
ed., pp. 197-198): Prentice Hall Professional Technical Reference.

Lang, B. (2012). Early Oculus Rift Specifications and Official Site, Confirms $500 Target.
2014, from http://www.roadtovr.com/early-oculus-rift-specifications-and-official-site-
confirms-500-target/

Oculus VR, I. (2014). Oculus SDK C API Overview (SDK Version 0.3.1 Preview). 5. http://
static.oculusvr.com/sdk-downloads/documents/
Oculus_SDK_Overview_0.3.1_Preview.pdf

Piyathaisere, D. V., Margalit, E., Chen, S.-J., Shyu, J.-S., D'Anna, S. A., Weiland, J. D, . ..
Kim, S. Y. (2002). Heat effects on the retina. Ophthalmic surgery, lasers & imaging: the
official journal of the International Society for Imaging in the Eye, 34(2), 114-120.

Shreiner, D., Sellers, G., Kessenich, J. M., & Licea-Kane, B. M. (2013). Introduction to

OpenGL OpenGL programming guide: The official guide to learning OpenGL, version
4.3 (Eighth ed., pp. 1-12): Addison-Wesley Professional.

Page 12 of 12

