

COMPUTING EGO-MOTION AND

STRUCTURE FROM POINT FEATURES

eingereichtes
PROJEKTPRAKTIKUM

von

Lehrstuhl für
STEUERUNGS- UND REGELUNGSTECHNIK

Technische Universität München
Univ.-Prof. Dr.-Ing../Univ. Tokio Martin Buss

Univ.-Prof. Dr.-Ing. Sandra Hirche

Betreuer/-in: Prof. Dr. sc. nat. Jörg Conradt

Beginn: 27.10.2009

Abgabe: 29.01.2010

Bertrand Bourguignon

geb. am 04.08.1985
wohnhaft in:

Georgenstrasse 99
80798 München

Tel.: 0176 86234261

Stefan Ehrlich

geb. am 21.06.1984
wohnhaft in:

Connollystr. 11/H18
80809 München

Tel.: 0172 7467102

Carrhel Kouam Kamwa

geb. am 04.02.1986
wohnhaft in:

Hiltenspergerstraße 84
80796 München
Tel.: 089 303639

 1

Abstract

Orientation within a spatial structure could simply be implemented by tracking point
features in images captured by a moving video source. Due to perspective changes,
provided by the moving video source, it is possible to infer the motion of the camera, as
well as the position of the tracked features.
This work describes the development and evaluation of a system practically using this
method. Based on a small mobile robot, the aim was to implement appropriate
algorithms in order to prove the practical functionality of “Ego-motion and Structure
from Point Features”.
The developed system is equipped with a feature tracking algorithm that detects and
tracks coloured objects.
Wheel sensors, attached to the robot are used to do a rough measurement of the robot’s
position. Both tracked features and rough robot position are used by a localization
algorithm to calculate the feature’s as well as the camera’s position.
The developed system was evaluated under optimized laboratory conditions. It showed a
good functionality with limited accuracy. This work gives explanations for the lack of
precision and proposes measures to optimize the entire system.

2

 3

Contents

1 Introduction.. 7

1.1 Detailed Task Description ... 7
1.2 Scientific Motivation ... 8

2 Main Part.. 10

2.1 Development of the entire system ... 10
2.1.1 General Overview.. 10
2.1.2 WIFI-Communication..11
2.1.3 Robot Control .. 12
2.1.4 Robot position measurement ... 12
2.1.5 Camera Data Processing ..13
2.1.6 Camera Data Analysis ... 15
2.1.7 Localization Algorithm.. 18

2.2 Evaluation of the entire system.. 26
2.2.1 Laboratory Setup.. 26
2.2.2 Investigation 1 (robot) ... 27
2.2.3 Investigation 2 (localization algorithm)... 28
2.2.4 Investigation 3 (featuretracking).. 30
2.2.5 Investigation 4 (trajectory)... 32

3 Summary... 33

3.1 Critique and conclusion of the essential results... 33

Appendix... 37

List of Figures... 43

Bibliography... 45

4

List of symbols and abbreviations

LAN Local Area Network
WLAN Wireless Local Area Network
WIFI “Wireless Fidelity”
mm Millimeter
m² square-meter
V Volt
PC Personal Computer
Hz Hertz

 5

 7

1 Introduction

1.1 Detailed Task Description

During this project, we had to implement an algorithm in C on a Linux system to control
the robot of Figure 1.1 (a). The robot has a diameter of 200mm and is 260mm high. It
consists of 3 multi-directional wheels with incremental encoders, two microcontrollers, a
WLAN card, a CMOS camera and a tube on which a spherical mirror is mounted.
The 3 multi-directional wheels are up 120 degrees from each other. This allows a
translational movement in the x and y-direction and a rotational movement around the
robot center. On the basis of incremental encoders, the wheels rotation can be recorded.
The wireless card allows communicating with the robot via WLAN, and sending
different commands.
The sensor used in the system is a CMOS color camera (Electronics, VS6524). The
camera resolution is 640x480 pixels. Images of size 480x480 pixels can be recorded at a
frequency of 9Hz in a memory. The typically applications of this camera can be found in
mobile phone and video phone.
The core of the system is a spherical mirror attached to a tube, which is the “eye” of the
robot. Namely, the camera is oriented toward the spherical mirror to get a 360 panoramic
view from the current robot environment. The camera capture of the spherical mirror is
shown in Figure 1.1: mobile robot (a); spherical mirror (b) (b).
The aim of the introduced project is –based only on this mobile robot with cheap camera
sensor- to implement an algorithm that allows the robot to analyze its environment.
Namely, in a scene that includes features (obstacles or landmarks) with different colors
and in different ratio, the robot will move and take pictures of its environment. The
function of the algorithm is to track this features and to estimate their position. The
image sequence of the spherical mirror of the moving robot will be use to extract
information about the features. Then using this information, the algorithm will compute
the features positions. With the help of this features positions, the robot can orient itself
in its environment and, for example, return to its start position.

8 INTRODUCTION

(b) (a)

Figure 1.1: mobile robot (a); spherical mirror (b)

1.2 Scientific Motivation

Analyzing the environment to get spatial information is one of the most important tasks
of autonomous systems. The autonomy of robot vehicles, for example cars or flying
objects, depends on the collected spatial information and its interpretation. Almost all
types of service robots, the smallest household robot as well as complex humanoid
robots need spatial information to orientate and to fulfil their tasks. Industrial robots as
well can manage by far more difficult task with help of spatial information. Acquisition
and interpretation of the spatial environment is the basis of adaptive robotic systems that
work together with humans.

Today, various sensor systems are used to capture spatial information. The most
important types are listed below:

• Laser Range Scanner
• Ultrasonic Distance Sensor
• Stereo Camera Systems

It depends on the application which sensor systems or combination of several sensor
systems fits best to get the required quality of spatial information.

Laser Range Scanners afford a big range (up to ~18m) and a high precision (error: <=
20mm) for a relative high costs (~5000€). A range of 270° around the sensor system can
be captured quasi-simultaneously. The laser light source as well as the mechanical
components inside the sensor system leads to a high energy consumption (typically ~10-
20W). [1]

 9

Ultrasonic Distance Sensors are cheaper but less precise than Laser Range Scanner. The
echo of the emitted spherical sonic waves allows getting information about the distance
but not about the precise angle of the detected object. Environmental influences like
humidity and air turbulences can strongly influence the measurement results.

Stereo Camera Systems are relative cheap and afford a high precision of the captured
spatial information. However, the precision depends on the camera’s resolutions and the
complexity of the used algorithms to interpret the pictures. The limitations of this sensor
system strongly depend on available computing power, which is limited by the
application.

The method that is described in this thesis offers a new opportunity to capture and
interpret the spatial environment. The method is characterized by its simplicity and
provides several advantages compared to methods using typical sensor systems.

The camera and the emissive sphere allow the capturing of 360° around the sensor
system (robot). Hence, a changing of the sensor system’s position in order to capture
other important parts of the spatial environment is not necessary. The picture coming
from the camera is being reduced to its essence by cutting the most important part. The
reduced picture is used by an interpreting algorithm in order to detect and track
distinctive objects (features) around the robot. Changing of the robot’s perspective due
to its movement provides sequential data that is used by a localization algorithm to
calculate the feature’s and its own (the camera’s) position within the spatial
environment.

Due to the camera data reduction the algorithms to interpret the picture and calculate the
localization can be designed very simple. An algorithm that does not use high computing
power can be integrated on a simple microcontroller. This feature leads to several
advantages like cost savings and the opportunity to miniaturize the whole sensor system.
Another advantage is the reduced consumption when using a simple microcontroller.
Less power consumption leads to an increase in the sensor system’s mobility and its
autonomy.

In terms of the data reduction and the simplification of the interpreting algorithm the
precision of the method is limited and not as high as the precision of Laser Range
Scanners. The method is particularly interesting to be used in applications where high
precise sensor systems are too expensive and typical cheap sensor systems are too
imprecise.

Applications are possible in the context of simple household robots. Household robots
that are used for example to clean the floor are typically equipped with so called
“bumpers” that helps them to orientate roughly. The sensor system, described in this
thesis could be compared with the “bumpers” in terms of manufacturing costs.
Upgrading a household robot with the opportunity to use spatial orientation would
highly improve its efficiency.

10 MAIN PART

2 Main Part

2.1 Development of the entire system

2.1.1 General Overview

Figure 2.1: Functional diagram of the entire system

The entire system consists of two main components: The robot and the Software to
control the robot. The software is embedded on an external PC that communicates with
the robot via Local Area Network (LAN).

The robot is equipped with two microcontrollers, one microcontroller for the sensors and
actuators one microcontroller for the camera. The robot is further equipped with a
WLAN-Module to be able to communicate via LAN. The central unit is microcontroller
1. A communication with microcontroller 2 is only possible via microcontroller 1. The
robot is only able to accept several commands afforded by the implemented protocols on
microcontroller 1 and 2. In order to use the mobile robot as a sensor system additional
software is required.

 11

The external software consists of several subcomponents. The interface socket is the unit
that afford data exchanges with the robot via LAN. It is used to send different commands
to the robot in order to control its behaviour. Furthermore the interface socket is used to
receive the requested data from the robot. The software requests for the wheel encoder
values and data from the camera. Both incoming data is being processed. The wheel
encoder values are being used to calculate the current robot position roughly. The
camera data is used for detecting and tracking distinctive features around the robot. Both
processed data is used by the algorithm to estimate the position of the tracked distinctive
features and the current position of the robot. Important data is being showed by the
human-machine-interface and the graphical user interface. The computed data is also
being exported as a text-file. The human-machine-interface is further usable to control
the robot via abstract commands.

2.1.2 WIFI-Communication

To make the communication between the robot and the computer easier, it has been
necessary to develop a basic Software. The basic Software consists of all the functions
implemented in the project. These functions can be divided into 3 categories with
different objectives: first, to establish a wireless connection between computer and
robot; they are grouped under a single socket. Another purpose is to control the robot
wheels (wheel control function). The third objective is to measure the robot position.

Socket
As shown in Figure 2.1 the Socket ensures the information flow between the robot and
the computer via a wireless router. The Socket works according to the client- server
principle. The client is here the computer and the server the robot. A simple example of
the communication between them is shown in Figure 2.2, too. The socket is
implemented in C and represents a quantity of functions that are used to establish and
parameterize the connection between the robot and the computer and if the task was
made, will be closed. The commands that are included in these functions are transferred
via the wireless router to the robot. Using its WLAN cards, the robot can receive and
executes them.

Figure 2.2: Client – Server Communication

12 MAIN PART

2.1.3 Robot Control

The control functions send commands to the robot which cause the movement of the
robot in a space. This functionality is implemented by several functions (see appendix:
Software/Omnimotion/RobotInterface.c).

• driveforward (): This function sends a command to the robot to move forward
• drivebackward (): This function can move the robot backwards
• rotation (): The robot can perform this function to rotate
• freeze (): The freeze () function stops the movement of the robot

2.1.4 Robot position measurement

As reminder the aim of this work is to compute the structure from point features with
none stationary source (ego-motion) and to estimate their positions within an image
sequence. The measurement of the current camera position (robot position) in world
coordinates plays a major role in the estimation of these positions. Namely the algorithm
uses the recursive least square approximation and the position of the robot is used as
start value of this approximation. The robot´s position is computed by the robotposition
() function. Namely the current value of the robot´s encoders is constantly interrogated
and incremented while driving the robot. Based on these encoder values and a simple
mathematical approach, the position of the camera is evaluated and passed on to the
estimation algorithm. The recording of images occurs simultaneously with robot´s
movement. The algorithm thus receives data input packets consisting of an image
sequence together with the corresponding camera position recorded during the trip. An
example of an image sequence is shown in Figure 2.3. The points represent the positions
where the images and the camera positions were stored.

Figure 2.3: Robot position measurement

Pictures Camera position
(X,Y,θ)

1 (x1,y1, θ1)
2 (x2,y2, θ2)
… …
n (xn,yn, θn)

 13

640

480

2.1.5 Camera Data Processing

The camera data processing comprises getting pictures from the robot’s camera and
processing them to be usable for further application. This functionality is implemented
by two functions (see attached CD: C-Code (software)/Omnimotion/RobotInterface.c).

• getCamData()
• DataToPic()

Detailed flow diagrams to both functions are attached in the appendix (see appendix A,
B)

2.1.5.1 getCamData()

The function getCamData() is used to get the data of one picture from the robot’s camera
controller.
Before requesting for one picture several adjustments has to be done: Normally the
camera controller sends the data of one whole captured picture (640x480 pixels). As
described in Chapter 1.1 (Detailed Task Description) the camera controller is able to
extract the most interesting part of the picture through cutting a ring consisting of
256x12 pixels. In order to get the ring-data instead of the whole-picture-data the camera-
controller needs to be adjusted.

Figure 2.4: Extraction of the ring

Another adjustment that has to be done before requesting for one picture is the camera
offset setup. In terms of manufacture tolerances of the camera and the emissive sphere it
is most probable that the cut ring is not well-positioned. That leads to a skewed picture
and therefore to the problem that interesting information around the robot would not be
viewable correctly. An adjustment is done through redefinition of the position where the
ring is cut out.

After all adjustments have been done a request for one picture is sent. The function
getCamData() thereupon waits for incoming data. As soon as it receives one picture is
returns the data.

14 MAIN PART

256 pixels
12 pixels

2.1.5.2 DataToPic()

The function DataToPic() is used to convert the incoming camera data into a “real”
picture consisting of pixels. The data format of the raw camera data is arranged as
follows:

Figure 2.5: raw camera data

In the first step the pixel value is calculated from the top- and the bottom-byte. The pixel
value contains information about the pixel’s colour.

Figure 2.6: calculation of the pixels

Referring to the ring that was cut out by the camera controller the pixels do not have the
correct order. In order to use the data as a ring in a spread format a reordering of the
pixels has to be done. Therefore two lookup tables, one for the x-position, one for the y-
position are used to bring the pixels into the right order.

Figure 2.7: Rebuilding and spreading of the ring

Top-byte
Bottom-byte

…

1pixel

6144 bytes

3072 pixels

 15

The returned picture is usable for instance to show it on the screen or to do further
processing.

2.1.6 Camera Data Analysis

In order to analyse and interpret the robot’s view of the environment it is necessary to
introduce some conventions first.
It does not make sense to aspire correct interpretations of the environment around the
robot in every possible viewable scene. In contrary it is reasonable to prove the practical
functionality of the localization algorithm first under defined optimized artificial
laboratory conditions. These definitions allow focusing the development of the
interpretation algorithms.

The defined laboratory conditions are described as follows:

• The viewable scene has an expansion of maximal 2 m² and is protected from
external influences like light sources or irritating objects with the help of walls.

• The scene is well illuminated.
• The obstacles are immobile.
• The obstacles that help the robot to orientate are coloured red, green or blue.
• The obstacles are higher than at least 100mm
• The obstacles has a diameter of at least 50mm and maximum 200mm

The analysis and interpretation of the viewable scene around the robot is being carried
out in two steps. The first step is the analysis of the picture in order to find distinctive
points or objects. The second step is to assure that a distinctive point or object will be
recognized in future pictures. This is implemented by the following two functions (see
appendix: C-Code (software)/Omnimotion/Featuretracking.c).

• featuredetection()
• featuretracking()

Detailed flow diagrams to both functions are attached in the appendix (see appendix C,
D)

2.1.6.1 Featuredetection()

The function featuredetection() is used to analyze the picture in order to find distinctive
points or objects. The feature detection that is implemented is specialized in the
identification of coloured objects.

16 MAIN PART

In the first step three new pictures are built using the incoming picture and contain the
information of the picture’s red- green and blue-intensity. The following steps are done
for each of the three pictures (red, green and blue).

In order to separate interesting parts of the picture that could be an indication for
distinctive objects a segmentation is done. This is carried out by a comparison of each
pixel’s intensity with the average intensity of the whole picture. A pixel becomes the
property “threshold positive” if its intensity exceeds a defined limit which depends on
the average intensity.

An additional noise filter could be optionally used in this part of the function to
eliminate isolated threshold positive pixels.

After getting regions that could represent an interesting object these regions first have to
be classified as valid. The validation is done by measuring the regions expansion in x-
and y-direction of the picture. After classification of the region as valid the feature
extraction can be done by calculation of the region’s center. The calculated value is the
angle under which the robot “sees” the detected object.

The angle and the colour of the detected feature are written into a list of features that is
returned by the function.

2.1.6.2 Featuretracking()

The function featuretracking() is used to recognize features that were already detected in
past pictures. To handle new detected features and the problem that features could be
lost are also important tasks which are implemented in that function. The loss of an
object could naturally be effected by changing of the robot’s perspective due to its
movement. A detected object can disappear (see Figure 2.8: blue object) for a moment
because of being covered by another object (see Figure 2.8: red object).

Figure 2.8: Temporary loss of a feature

 17

With respect to that problem a lost feature will be kept “alive” for a short time in order
to keep the possibility to redetect it.

In the first call of the functions no tracked features are available. Because of that fact all
detected features are written into a new featurelist that contains the tracked features. All
copied features get the certainty-level of 1.

In the following calls of the function each detected feature is compared with each
tracked feature. If the colour is equal and the position similar the detected feature is
considered as recognized. Within the list of tracked features the position of this feature is
updated and its certainty-level is incremented.

New detected features are added to the list of tracked features and get a certainty-level of
1.

Old features that are lost for one moment loose one certainty-level. This is done step-by-
step until the level attenuated to 0. Then the feature is marked with an illegal position
value that shows that it is absolutely lost and could never be recognized.

The tracked features are returned by the function in a list of features.

Preparation of the data for the localization algorithm

In order to calculate the positions of the objects around the robot the localization
algorithm needs tracked features from a sequence of captured pictures. This sequence is
generated through collecting the data of a limited number of pictures all over the way the
robot moves through the scene (see Figure 2.9: green dots).

Figure 2.9: Collecting data

18 MAIN PART

The collected data is arranged as follows:

Figure 2.10: Collected data

2.1.7 Localization Algorithm

2.1.7.1 Problem description

The problem we have to solve is as follows: our robot moves in an unknown
environment and has to determine positions of obstacles seen by the feature tracking
and the position of the camera/robot itself. Indeed, the concept of ego-motion is the
“computation of camera motion from a sequence of images” [2]. This sequence is built
with pictures taken during the movement of the robot and will be used to deduce the
positions of both features and camera.

Figure 2.11: Schematic view of a short move in a 4-obstacles environment

The obstacles are supposed immobile, each one bring therefore 2 unknowns (abscissa
and ordinate) in the problem. The camera move and we have to be permanently able to
estimate its position/orientation, i.e. we must be able to calculate its trajectory (dashed
line).

Picture Feature1 Feature2 Feature3 … Feature n
1 colour1, Φ1 colour2, Φ2 colour3, Φ3 … colour n, Φn
2 colour1, Φ1 colour2, Φ2 colour3, Φ3 … colour n, Φn
3 colour1, Φ1 colour2, Φ2 colour3, Φ3 … colour n, Φn
… … … … … …
m colour1, Φ1 colour2, Φ2 colour3, Φ3 … colour n, Φn

 19

To find a solution we have to use the available measurements. These are the angles
under which the features are seen and come as output of the feature tracking. Figure 2.12
shows those measurements in the case where the camera detects 2 features.

Note that sensors on the robot’s wheels might be able to give a piece of information
about the position of the camera. These data must however be carefully processed: their
values depends strongly on the environment (type and inclination of the floor…etc).

Figure 2.12: Data measured by the feature tracking

2.1.7.2 Problem modelling

The coordinates of the camera are stored in a 3-dimensional vector: (X_Cam, Y_Cam,
θ_Cam). Those are the abscissa, ordinate and angle to the origin, which is taken at the
start point of the camera. These 3 components are together called “pose” of the camera.
Each Feature is localized by its abscissa and ordinate: (X_Feat, Y_Feat) in the same
coordinate system.

Figure 2.13: Schematic representation of all parameters for a given feature at a certain
position

20 MAIN PART

For the k-th feature, at the j-th position (actually the position corresponding to the j-th
picture saved in the sequence of the feature tracking), we have the following relation:

Φj,k = atan2(Y_Feat[k]-Y_Cam[j], X_Feat[k]-X_Cam[j]) - θ_Cam[j] (2.1)

With respectively N and M (valid) features and pictures, our system reaches the size of
M*N equations (k=1..N and j=1..M).

The unknown parameters are X_Feat, Y_Feat for N features and X_Cam, Y_Cam,
θ_Cam for M pictures. We store all unknowns in a big unknown vector:

p=(X_Feat[1:N], Y_Feat[1:N], X_Cam[1:M], Y_Cam[1:M], θ_Cam[1:M]) (2.2)

As the unknown vector’s size is 2N+3M, we will get a unique solution only if

MNMN ≤+ 32 i.e. ≥M
3

2

−N

N
 with 4≥N (2.3)

Note that the condition 4≥N limits our algorithm to environment containing 4 features
or more

2.1.7.3 Solution of the equation system

We are now facing the following mathematical problem:

f(p) = Φ (3.1)

where f is a nonlinear function from R2N+3M to RMxN.

Solving such a problem with an analytical method is never easy, considering that the
minimal number of equations is reached for N=4 (which implies M=8, see (2.1)), and is
equal to 4x8 = 32. Moreover, the measured values of Φ are subject to errors and
uncertainties, which exclude an exact solution. The method to use is therefore an
optimization method which can solve nonlinear multidimensional problems. Methods
based on least squares approximation seem to be well adapted to such a problem: even
with over-determined systems (happens when MN>2N+3M), these methods will try to
find the solution which best fits the data.

However, such methods need a start point for the unknown vector p, otherwise the
algorithm could get stuck at a local minimum, far from the real solution. This is where
we use the data from the wheels sensors, giving starting values for X_Cam[1:M],
Y_Cam[1:M] and θ_Cam[1:M]. Starting points for X_Feat[1:N] and Y_Feat[1:N] can
then be found from these values and Φ (see simulation).

 21

2.1.7.4 Simulation with Matlab

In order to get acquainted with the resolution of the problem and the behavior of the
algorithm in this particular case, we first programmed a simulation with Matlab. We
simulated features and several successive positions of the camera. The trajectory,
number/positions of features and number of camera poses were completely
customizable. To simulate the uncertainties/perturbations of the real system, we added
white noise to all components of the pose of the camera.

In Matlab, a function that performs the least squares approximation like we want it to is
the lsqnonlin function. We let this function run with different configurations, and
numerous times with the same configuration to estimate the influence of the white noise
(=perturbations). For each simulation, the real trajectory differs from the programmed
one because of white noise. We calculate the angle under which feature is seen from the
position of the feature and the (real) pose of the camera. We then run lsqnonlin with our
nonlinear equation system (3.1) as input. Finally, the simulation plots (with animations)
the trajectory of the robot, returns the real position of the features, the first evaluation of
these positions (see below) and the positions after least squares optimization.

(a) (b)

Figure 2.14: Simulation with a “complex” trajectory (a); Simulation with a straight line trajectory (b)

The position of each feature is first evaluated from 2 poses of the camera (these poses
are deduced from the wheel sensors in real case). This first evaluation is critical and can
lead to aberrations if the algorithm gets stuck at a local minimum. In the previous
examples, the results (particularly the position of the red-circled feature of Figure 2.14)
were worse in the straight line case, no matter which points of the trajectory were used
for the evaluation. Least squares approximation is then able to calculate new values of

 X Center of the robot
Feature

• Orientation of the robot (direction of the front part)
Robot in its first and last position

22 MAIN PART

the position by considering the whole trajectory. Final values present (in almost all
cases) an improvement in comparison to the first evaluation.

How the features positions are first evaluated

Figure 2.15: First evaluation of the position

To evaluate the position of the feature from 2 poses A and B of the trajectory, we apply
the formula:

ACamXFeatX

ACamYFeatY
A

)tan(

−
−=+Α ϕθ

BCamXFeatX

BCamYFeatY
BB

)tan(

−
−=+ ϕθ

We can then deduce the expression of X_Feat and Y_Feat in function of the other
parameters.

How to select a good first-position-evaluation for each feature

Figure 2.16: Bad configuration for the first evaluation of the position of a feature

 23

Figure 2.16 shows bad conditions to evaluate the position of the feature: a slight error on
the orientation of the camera or due to the feature tracking can have a huge influence on
the resulting position of the feature.
In the 2nd case (Figure 2.17), the conditions are much better: abs(α) ≈ 90°

Figure 2.17: Better configuration for the first evaluation

If we use the previous denominations (with poses A and B) the expression of α is the
following:

α = (BB ϕθ +) - (Aϕθ +Α)

 With a straight line trajectory, the optimal condition (abs(α) ≈ 90°) can hardly be
reached, particularly when a feature is situated on the axis of this line (see Figure 2.14
(b)), this is why it is strongly recommended to let the algorithm run after a complex
trajectory. Once the first evaluation of each feature position can be “correctly” evaluated
(the deduced coordinates must have the same sign as the real coordinates and their
absolute value must not exceed the one of the real coordinate by more than 200%), then
the performance of the least squares algorithm can be judged satisfying (error < 15%).
With a more complex trajectory, we can get closer to the criteria abs(α) ≈ 90° and the
error can then easily falls under 10%.

2.1.7.5 Implementation in C

Global structure of the localization algorithm

In our simulation, it was easy to get data to work with: we just simulated the outputs of
feature tracking and wheel sensors in an adapted format. In the real case, we had to
integrate the localization algorithm with other components of our system. Three steps of
the algorithm are important to understand its global functioning: filter feature tracking
data, first estimation of features positions (as we did in the simulation) and least squares

24 MAIN PART

approximation. Figure 2.18 shows these three steps and the inputs/outputs of the
localization algorithm.

Figure 2.18: Global structure of the localization algorithm

The function performing the least squares approximation was chosen in a library called
levmar [3]. To compile the code, the BSD-licensed package LAPACK is required, as
well as BLAS (Basic Linear Algebra Subprograms) and eventually ATLAS
(Automatically Tuned Linear Algebra Software). We selected dlevmar_bc_dif() instead
of other functions because its format corresponds to what we are trying to solve (like
lsqnonlin in Matlab) and it lets the possibility to set lower and upper bounds to the
solution, preventing the algorithm from converging to absurd values in case of wrong
estimation before the least squares approximation.

Filter data from feature tracking

Although our feature tracking already selects the features which are more likely to
correspond to real obstacles, the localization algorithm cannot work with “invalid” data.
Indeed, even during a short run, all features are not always visible, feature tracking then
returns a corresponding alternative value (777 or 999, see 2.1.6 Camera Data Analysis).
This is why we first filter the returned values from feature tracking. Figure 2.19 shows

 25

how we proceed: we first eliminate features which are too often absent (grey cells,
features k-1 and k+1) and then, given the remaining features, we keep the pictures (=
array’s lines) containing only valid values (normal/white cells). On Figure 2.19, pictures
1 and 2 have been deleted (strike) because feature k was not yet identified (bold) by
feature tracking, in the same way picture M has been deleted because of the
disappearance of feature 2. At the end of filtering, we send all valid values (normal
cells), as a new array (corresponding to the measured values of Φ), to the least squares
function.

Figure 2.19: Filtering applied to an array returned by feature tracking

Nevertheless, deleting invalid features results of arbitrary choices: how many times must
a feature be seeable (resp. absent) to consider it as a valid (resp. invalid) feature? By
eliminating too many features, the result could be incomplete (real obstacles missing), or
the number of seen features could be too low (must be > 3M/(M-2) according to (2.1))
and prevent least squares function from working. On the contrary, by not eliminating
enough features, the number of pictures can be too low (must be > 2N/(N-3)).

We created a parameter called MISSING_FEATURES_COUNTER as a tolerance limit
for each feature, before being regarded as an invalid feature. When the number of invalid
pictures for a feature becomes greater than MISSING_FEATURES_COUNTER, this
feature is deleted from the array. The right value of MISSING_FEATURES_COUNTER
depends of course on the sensitivity of the feature tracking and on the number of pictures
M returned. In our experiment, we tested different values of
MISSING_FEATURES_COUNTER, M and feature tracking sensitivity.

26 MAIN PART

Least squares approximation

 dlevmar_bc_dif() uses the Levenberg-Marquardt method to minimize the sum
of squares of nonlinear functions. Our problem is the following (see (3.1), (2.1) and
(2.2)): f(p)= Φ

with p=(X_Feat[1:N], Y_Feat[1:N], X_Cam[1:M], Y_Cam[1:M],
θ_Cam[1:M])
 f j,k(p) = atan2(Y_Feat[k]-Y_Cam[j], X_Feat[k]-X_Cam[j]) - θ_Cam[j]
 = atan2(p[N+k] - p[2N+M+j], p[k] - p[2N+j]) – p[2N+2M+j]
 = Φj,k

Note that after the filter we get new values from M and N (smaller than those in Figure
2.19).

In our case, we call dlevmar_bc_dif() with the following parameters (see appendix E for
prototype):

dlevmar_bc_dif(f, p, Φ , M, N, lb, ub, MaxIter, opts, info, NULL, NULL, NULL);

The given p contains the first evaluation of all unknowns.
lb is the lower bound for vector p
ub is the upper bound for vector p
MaxIter = maximal number of iterations
opts contains the minimum options for the approximation of the Jacobian of f

Note: lb and ub can be define in relationship with the first approximation of p

After the function has run, p contains the calculated solution.

2.2 Evaluation of the entire system

2.2.1 Laboratory Setup

In order to test the algorithm in the real world, an experiment environment was set up.
This environment has to offer optimal conditions in order to observe the system
behavior. Indeed, before testing the system in extreme conditions, it has to prove its
efficiency in a favorable environment. Our experiment environment is shown on Figure
2.20. Boxes (a) are used as walls/limits and protect the scene from external influences
like light sources or moving objects. The green, blue or red objects (b) are the obstacles

 27

(=features) that the robot will have to localize. These features are placed on green points.
These green points (c), placed every 20cm on the floor, are used as marks to estimates
the coordinates of objects. The algorithm depends heavily on the scene lightning,
therefore light sources (d) were set up at the scene´s corners. An experiment consists of
10 up to 13 testruns. In a testrun, the robot moves on a predefined path under constant
parameters. The parameters are the changes for other experiments to test the algorithm’s
accuracy, robustness and find hints to optimize the system robustness and the stability of
algorithm.

Figure 2.20: The experimental laboratory

2.2.2 Investigation 1 (robot)

Description

The first investigation consists in observing the behavior of the algorithm by different
robots. There are two robots: a blue one and a red one. The two robots have to move
forward while tracking the features and estimate their positions. The first and the sixth
experiments consist of 5 Features, the ninth and the tenth of 6 Features.

(b)

(d)

(c)

(a)

28 MAIN PART

Experiment Parameter(robot)
1 Blue
6 Red
9 Blue
10 Red

Figure 2.21: Configurations of investigation 1

Results and Interpretation

The following data is an extraction from the whole test evaluation. The detailed results
of investigation 1 are documented in an excel sheet that is archived on the attached CD
(see folder: Investigations)

Experiment Parameter(robot) average error
x (abs. value)
[m]

average error
y (abs. value)
[m]nu

Number of the
none tracked
features 1 Blue 0.05 0.06 0

6 Red 0.10 0.05 1
9 Blue 0.10 0.06 0
10 Red 0.03 0.05 2

Figure 2.22: Results of investigation 1

This data show significant deviation by the x estimation. This is not because of the
robot, but the reason can be, that the number of features has been augmented. In the
analysis of the result it was also observed that the red robot has difficulty to track green,
blue and red features. This lower sensitivity of the red robot could be explained by the
camera quality. Although both robots are equipped with the same camera model, two
different copies can present slight differences; the camera should therefore be calibrated
for each robot. An amelioration of the red robot results can be achieved with a specific
calibration of sensitivity.

2.2.3 Investigation 2 (localization algorithm)

Description

The localization algorithm has two essential parameters which could influence the
quality of the localization results. The first parameter is the number of pictures that are
used by the localization algorithm to do its calculations (picture means in this context:
features extracted from the pictures and the measured robot position). The second

 29

parameter is the accepted maximum value of pictures that could not be used for
calculation in terms of invalid or lost features.
In investigation 2 two different parameter setups are tested:

• 12 pictures and thereof max. 3 invalid pictures
• 16 pictures and thereof max. 4 invalid pictures

In the first setup min. 8 pictures and in the second setup min. 12 pictures are used to
calculate the feature’s and camera’s position.

The investigation includes testruns with two different robots, a red one and a blue one.
This should avoid interpreting influences that are effected by differences of the robots.
The following table shows the different configurations of the investigation:

Configuration Robot Parameter-Setup Number of testruns
1 Red 12 / 3 10
2 Blue 12 / 3 10
3 Red 16 / 4 10
4 Blue 16 / 4 10

Figure 2.23: Configurations of investigation 2

Results and Interpretation

The following data is an extraction from the whole test evaluation. The detailed results
of investigation 2 are documented in an excel sheet that is archived on the attached CD
(see folder: Investigations).

Configuration Parameter-
Setup

average error x
(abs. value)
[m]

average error y
(abs. value)
[m]

Number of
failed testruns

1 12 / 3 0.05 0.06 2
2 12 / 3 0.10 0.05 5
3 16 / 4 0.13 0.05 0
4 16 / 4 0.09 0.06 1

Figure 2.24: Results of investigation 2

Data analysis show that an increasing of the number of pictures that are used by the
localization algorithm to calculate the feature’s and the camera’s position does not
influence the localization results. The variety of the localization results is neither
identifiable nor significant.

30 MAIN PART

However, the data shows a significant positive influence on the number of failed
testruns. This can be considered as an opportunity to optimize the system in terms of
robustness. But note that an increasing of the number of pictures used to calculate the
localization has a negative impact on the required computing power.

2.2.4 Investigation 3 (featuretracking)

Description

The featuredetection algorithm has several parameters which could influence the quality
of the localization results. The parameters can be used to adjust the featuredetection in
terms of its sensitivity. The parameters that are varied within this investigation are the
sensitivity for red, green and blue objects.

• LIMIT_RED
• LIMIT_GREEN
• LIMIT_BLUE

In the first setup the featuredetection is adjusted low sensitive; in the second setup it is
adjusted high sensitive.
The investigation includes testruns with the red and the blue robot. This should avoid
interpreting influences that are effected by differences of the robots. In terms of
manufacture tolerances of the cameras, the blue and the red robot need different
parameter-values for a similar practical behaviour of the featuredetection.

The following table shows the different configurations of the investigation:

 Configuration Robot Parameter-Setup Testruns
1 Blue LIMIT_RED = 180

LIMIT_GREEN = 115
LIMIT_BLUE = 90
(low sensitive)

10

2 Red LIMIT_RED = 175
LIMIT_GREEN = 110
LIMIT_BLUE = 87
(low sensitive)

10

3 Blue LIMIT_RED = 175
LIMIT_GREEN = 110
LIMIT_BLUE = 87
(high sensitive)

10

4 Red LIMIT_RED = 144
LIMIT_GREEN = 108
LIMIT_BLUE = 88
(high sensitive)

10

Figure 2.25: Configurations of investigation 3

 31

Results and Interpretation

The following data is an extraction from the whole test evaluation. The detailed results
of investigation 3 are documented in an excel sheet that is archived on the attached CD
(see folder: Investigations).

Configuration Parameter-
Setup

average error x
(abs. value)
[m]

average error y
(abs. value)
[m]

Number of
failed testruns

1 low sensitive (blue
robot)

0.12 0.09 1

2 low sensitive
(red robot)

0.03 0.05 1

3 high sensitive
(blue robot)

0.14 0.07 0

4 high sensitive (red
robot)

0.11 0.06 0

Figure 2.26: Results of investigation 3

Data analysis shows that an increasing of the featuredetection’s sensitivity does not
influence the localization results. The variety of the localization results is neither
identifiable nor significant.

However, the data shows interesting information in the testruns 1&9 of configuration 3
and in testrun 9 of configuration 4. One example is showed as follows:

Figure 2.27: Results (detail) of investigation 3

The table shows a feature, detected and tracked in testrun 1 of configuration 3 that does
actually not exist. Features that are used by the localization algorithm, although they
does not exist, will disturb the calculation of the position of other features and finally
also the calculation of the camera position.
The estimated position of feature “b2” may “suffer” from the additional detected feature
that does not exist. All other testruns of this configuration show a sufficient estimation
of the position of feature “b2”.

32 MAIN PART

The localization results cannot be improved by increasing the featuredetection’s
sensitivity. In contrary, this measure effects the detecting and tracking of non-existing
features in certain cases. The assumption that these non-existing features disturb the
localization results could be verified for several testruns.

2.2.5 Investigation 4 (trajectory)

Our 4th investigation aimed to compare the results obtained in a same environment with
two different trajectories: a straight line (T1) and a little more complex trajectory (T2):

Figure 2.28: Configurations of investigation 4

Our environment consisted of 6 features including one on the axis of the “straight line
trajectory” (F4). This was thought to show what we saw with the simulation: the final
localization of features should be better with T2, mainly due to the first estimation of
F4’s position.

We then compared errors of feature localization for a total of 47 testruns (28 for T1 and
19 for T2), with different values of feature tracking sensitivity.
The results do not show any improvement in the feature localization, we even notice a
precision degradation for a certain sensitivity of feature tracking. By analyzing all
measurements, we saw that too many features were “recognized” (imaginary features
were “seen”) although this didn’t happen during T1 with the same sensitivity. Of course,
those features disturb the global results of least squares approximation: the algorithm
tries to optimize a set of parameters from aberrant values.

This experiment shows the critical importance of the set of parameters feature tracking
sensitivity/filtering of feature tracking data. In order to correctly evaluate the behavior of our
system in such a situation, we should therefore optimize these parameters first, and then retry
this experiment.

 33

3 Summary

3.1 Critique and conclusion of the essential results

The project’s objective was about to prove the practical functionality of an algorithm
using features from a spatial environment to orientate and to provide the possibility for
egomotion. Base of the project is a small mobile robot that is equipped with an
omnidirectional driving system, a camera and an emissive sphere, theoretically able to
orientate in a spatial environment. In order to control the mobile robot using a
localization algorithm, software was developed within this project. This software runs on
an external PC and communicates with the robot platform via WLAN.

The detection and tracking of distinctive objects around the robot could be implemented
and was evaluated under optimized laboratory conditions.

A rough measurement of the robot’s movement could be implemented by capturing the
incremental encoders of the omnidirectional wheels. This data is strongly influenced by
the environment (type and inclination of the floor) and therefore could only be
considered as a support for the calculation of the localization algorithm.

A localization algorithm was implemented and evaluated under optimized laboratory
conditions. It uses the angles under which distinctive features are “seen” as well as the
rough measurement results of the robot’s movement to estimate the feature’s and the
robot’s (the camera’s) position within the spatial environment.

The position estimation of the localization algorithm has a limited accuracy, but in the
context of the laboratory setup the results can be considered as satisfying. In case of
detecting and tracking too few features from the spatial environment, failure
measurements may occur.

Investigations on the system within the laboratory setup provide information about
opportunities to improve the localization algorithm’s accuracy as well as the probability
for occurrences of failure measurements. Possible optimizations are described as
follows.

34 SUMMARY

Camera resolution limitations

In terms of saving costs and required computing power the resolution of the camera is
limited. That limitation effects an error that cannot be considered as insignificant.
The resolution of possible angles between 0° and 360° is approximately 1.4°. Hence an
error of 1.4° has to be expected in the worst case.
The impact on the localization results depends on the distance between the robot and the
detected object. A calculation with the law of cosines results that an object that is
positioned 1 m afar from the robot could be considered as approximately 2.5 cm away
from the actual “real” position due to the camera’s resolution limits.

Figure 3.1: Camera resolution error

Featuretracking

Imprecise localization results can be effected by imprecise featuredetection and
featuretracking results.
Errors could for example result due to a miscalculation of the detected object’s center:
Not every object is well illuminated from every possible direction the robot may “see” it.
This can effect that only half of the object is detected and hence the object’s center may
be “shifted” to one direction (see Figure 3.2: Problems caused by partial illumination).
The impact on the localization results depends on the distance between the robot and the
detected object. Near objects that have temporary the described properties will effect a
bigger error than objects that are far away.

Figure 3.2: Problems caused by partial illumination

∆Φ ≈ 1.4°

right angle

wrong angle

light source

 35

Errors can also occur because of feature losses. The classification of an assumed object
as valid depends on how big it appears in the picture. Hence an object that is too far
away could not be detected and will be lost or never “seen”. In addition it is possible that
the featuretracking gets confuse by the occurrence of too many features, because new
features could be considered as already seen. The localization results become imprecise
if the algorithm gets too less or wrong information about the spatial environment around
the robot.

In order to optimize the featuredetection and the featuretracking in terms of robustness
several measures are possible. Using filters to brighten the picture or increase its contrast
could effect a better initial situation for the implemented featuredetection. These filters
can also be implemented adaptive to changes of the environment.

An improvement is also possible through changing of the segmentation algorithm (see
Chapter 2.1.6 Camera Data Analysis). Instead of using the whole picture to calculate the
threshold-status of every pixel it is also possible to calculate the threshold-status in the
context of a 3x3-Array that is shifted through the whole picture (Figure 3.3:). This could
provide an improvement of the algorithm in terms of problems effected by partial
illumination.

Figure 3.3: Partial segmentation

Instead of using the colour intensity, other properties of the spatial environment could be
used as well. Distinctive objects can also be detected by their edges or the type of their
shape. This could also improve the interpretation algorithm in terms of problems
effected by partial illumination or the independence from illumination itself.

The optimization opportunities of the featuredetection and the featuretracking are
manifold. Further investigation has to be accomplished to predict which optimization
opportunities might have the most positive impact on the system’s robustness.

Least squares approximation

The localization algorithm, as it is now implemented, is not devoid of intrinsic
imperfections. Before implementing it on a master controller, we would have to reduce

36 SUMMARY

its needs in calculation power. Indeed, during our experiments, we measured the time
needed to process data with two different platforms:

• PC from CCRL: CPU = AMD Phenom 9850 (Quad-Core, 2.5GHz), 4GB RAM

• Netbook: CPU = Intel Atom N270 (Single-Core, 1.6GHz), 1GB RAM

With the first configuration, the average processing time was around 400ms and with the
second one, around 1.8s. By extrapolating this data, we can easily realize that it cannot
be adapted to an embedded microcontroller.

A combination of solutions might make it possible, among those we already listed:

• linearization of atan2 in our nonlinear equation system (if estimations are good,
the algorithm always works around a same point)

• change parameters of dlevmar_bc_dif() (reducing iterations limit, enhancing
tolerance on result…)

Filtering of feature tracking data

In real case, the biggest problem we had was to recognize features; we therefore tried to
optimize parameters related to the filtering of feature tracking data. We pointed out the
crucial importance to harmonize the filtering parameters to the feature tracking
sensitivity: when the sensitivity is too high and the filtering not strict enough, imaginary
features can be “seen”, which affects all results (localization of features/camera); and
when the sensitivity is too low and the filtering too strict, real feature can be “unseen”
which can lead to collisions with obstacles.

 37

Appendix

38 LIST OF FIGURES

Appendix A: Flow Diagram of function getCamData()

Set picture format

Set camera offset

Send request for data

of one picture

Data of one picture

is received

Return received

data

yes

Receive data
no

 39

Appendix B: Flow Diagram of function DataToPic()

Extract top- and bottom-

byte of pixel x

Combine the top- and

bottom-byte and calculate

the value of pixel x

Lookup for the correct x-

and y-Position (ring) of

pixel x

Save pixel x in picture

Return the picture

raw camera data

each pixel

40 LIST OF FIGURES

Appendix C: Flow Diagram of function featuredetection()

 41

Appendix D: Flow Diagram of function featuretracking()

42 LIST OF FIGURES

Appendix E: Prototype of dlevmar_bc_dif() (see [3] for more details):

int dlevmar_bc_dif(
 void (*func)(double *p, double *hx, int m, int n, void *adata),
 double *p, double *x, int m, int n, double *lb, double *ub,
 int itmax, double *opts, double *info, double *work, double *covar, void *adata);

 43

List of Figures

Figure 1.1: mobile robot (a); spherical mirror (b) ... 8
Figure 2.1: Functional diagram of the entire system... 10
Figure 2.2: Client – Server Communication.. 11
Figure 2.3: Robot position measurement... 12
Figure 2.4: Extraction of the ring... 13
Figure 2.5: raw camera data... 14
Figure 2.6: calculation of the pixels... 14
Figure 2.7: Rebuilding and spreading of the ring .. 14
Figure 2.8: Temporary loss of a feature... 16
Figure 2.9: Collecting data... 17
Figure 2.10: Collected data.. 18
Figure 2.11: Schematic view of a short move in a 4-obstacles environment 18
Figure 2.12: Data measured by the feature tracking.. 19
Figure 2.13: Schematic representation of all parameters for a given feature at a certain

position... 19
Figure 2.14: Simulation with a “complex” trajectory (a); Simulation with a straight line

trajectory (b) .. 21
Figure 2.15: First evaluation of the position.. 22
Figure 2.16: Bad configuration for the first evaluation of the position of a feature........ 22
Figure 2.17: Better configuration for the first evaluation.. 23
Figure 2.18: Global structure of the localization algorithm... 24
Figure 2.19: Filtering applied to an array returned by feature tracking........................... 25
Figure 2.20: The experimental laboratory ... 27
Figure 2.21: Configurations of investigation 1.. 28
Figure 2.22: Results of investigation 1 .. 28
Figure 2.23: Configurations of investigation 2.. 29
Figure 2.24: Results of investigation 2 .. 29
Figure 2.25: Configurations of investigation 3.. 30
Figure 2.26: Results of investigation 3 .. 31
Figure 2.24: Results (detail) of investigation 3.. 31
Figure 2.23: Configurations of investigation 4.. 32
Figure 3.1: Camera resolution error... 34
Figure 3.2: Problems caused by partial illumination... 34
Figure 3.3: Partial segmentation .. 35

 45

Bibliography

[1] [botzeit.de (2009). Robotik-Blog. Blog zu „SICK LMS-100“. URL:
http://botzeit.de/blog/2009_03_04_sick-lms-100.html (Abruf: 29.01.2009)

[2] J. Gluckman, and S.K. Nayar. Ego-motion and omnidirectional cameras. ICCV,
pages 999-1005, 1998.

[3] M.I.A. Lourakis, “levmar: Levenberg-Marquardt nonlinear least spares algorithms in
{C}/{C}++”, http://www.ics.forth.gr/~lourakis/levmar/, 2004

