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Abstract 

 

Orientation within a spatial structure could simply be implemented by tracking point 
features in images captured by a moving video source. Due to perspective changes, 
provided by the moving video source, it is possible to infer the motion of the camera, as 
well as the position of the tracked features. 
This work describes the development and evaluation of a system practically using this 
method. Based on a small mobile robot, the aim was to implement appropriate 
algorithms in order to prove the practical functionality of “Ego-motion and Structure 
from Point Features”. 
The developed system is equipped with a feature tracking algorithm that detects and 
tracks coloured objects. 
Wheel sensors, attached to the robot are used to do a rough measurement of the robot’s 
position. Both tracked features and rough robot position are used by a localization 
algorithm to calculate the feature’s as well as the camera’s position. 
The developed system was evaluated under optimized laboratory conditions. It showed a 
good functionality with limited accuracy. This work gives explanations for the lack of 
precision and proposes measures to optimize the entire system. 
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List of symbols and abbreviations 

LAN   Local Area Network 
WLAN  Wireless Local Area Network 
WIFI   “Wireless Fidelity” 
mm   Millimeter 
m²   square-meter 
V   Volt 
PC   Personal Computer 
Hz   Hertz 
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1 Introduction 

1.1 Detailed Task Description 

During this project, we had to implement an algorithm in C on a Linux system to control 
the robot of Figure 1.1 (a). The robot has a diameter of 200mm and is 260mm high. It 
consists of 3 multi-directional wheels with incremental encoders, two microcontrollers, a 
WLAN card, a CMOS camera and a tube on which a spherical mirror is mounted. 
The 3 multi-directional wheels are up 120 degrees from each other. This allows a 
translational movement in the x and y-direction and a rotational movement around the 
robot center. On the basis of incremental encoders, the wheels rotation can be recorded. 
The wireless card allows communicating with the robot via WLAN, and sending 
different commands. 
The sensor used in the system is a CMOS color camera (Electronics, VS6524). The 
camera resolution is 640x480 pixels. Images of size 480x480 pixels can be recorded at a 
frequency of 9Hz in a memory. The typically applications of this camera can be found in 
mobile phone and video phone. 
The core of the system is a spherical mirror attached to a tube, which is the “eye” of the 
robot. Namely, the camera is oriented toward the spherical mirror to get a 360 panoramic 
view from the current robot environment. The camera capture of the spherical mirror is 
shown in Figure 1.1: mobile robot (a); spherical mirror (b) (b).  
The aim of the introduced project is –based only on this mobile robot with cheap camera 
sensor- to implement an algorithm that allows the robot to analyze its environment. 
Namely, in a scene that includes features (obstacles or landmarks) with different colors 
and in different ratio, the robot will move and take pictures of its environment. The 
function of the algorithm is to track this features and to estimate their position. The 
image sequence of the spherical mirror of the moving robot will be use to extract 
information about the features. Then using this information, the algorithm will compute 
the features positions. With the help of this features positions, the robot can orient itself 
in its environment and, for example, return to its start position. 
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(b) (a) 

 
Figure 1.1: mobile robot (a); spherical mirror (b) 
 

1.2 Scientific Motivation 

Analyzing the environment to get spatial information is one of the most important tasks 
of autonomous systems. The autonomy of robot vehicles, for example cars or flying 
objects, depends on the collected spatial information and its interpretation. Almost all 
types of service robots, the smallest household robot as well as complex humanoid 
robots need spatial information to orientate and to fulfil their tasks. Industrial robots as 
well can manage by far more difficult task with help of spatial information. Acquisition 
and interpretation of the spatial environment is the basis of adaptive robotic systems that 
work together with humans. 
 
Today, various sensor systems are used to capture spatial information. The most 
important types are listed below: 
 

• Laser Range Scanner 
• Ultrasonic Distance Sensor 
• Stereo Camera Systems 

 
It depends on the application which sensor systems or combination of several sensor 
systems fits best to get the required quality of spatial information. 
 
Laser Range Scanners afford a big range (up to ~18m) and a high precision (error: <= 
20mm) for a relative high costs (~5000€). A range of 270° around the sensor system can 
be captured quasi-simultaneously. The laser light source as well as the mechanical 
components inside the sensor system leads to a high energy consumption (typically ~10-
20W). [1] 
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Ultrasonic Distance Sensors are cheaper but less precise than Laser Range Scanner. The 
echo of the emitted spherical sonic waves allows getting information about the distance 
but not about the precise angle of the detected object. Environmental influences like 
humidity and air turbulences can strongly influence the measurement results. 
 
Stereo Camera Systems are relative cheap and afford a high precision of the captured 
spatial information. However, the precision depends on the camera’s resolutions and the 
complexity of the used algorithms to interpret the pictures. The limitations of this sensor 
system strongly depend on available computing power, which is limited by the 
application. 
 
The method that is described in this thesis offers a new opportunity to capture and 
interpret the spatial environment. The method is characterized by its simplicity and 
provides several advantages compared to methods using typical sensor systems. 
 
The camera and the emissive sphere allow the capturing of 360° around the sensor 
system (robot). Hence, a changing of the sensor system’s position in order to capture 
other important parts of the spatial environment is not necessary. The picture coming 
from the camera is being reduced to its essence by cutting the most important part. The 
reduced picture is used by an interpreting algorithm in order to detect and track 
distinctive objects (features) around the robot. Changing of the robot’s perspective due 
to its movement provides sequential data that is used by a localization algorithm to 
calculate the feature’s and its own (the camera’s) position within the spatial 
environment.  
 
Due to the camera data reduction the algorithms to interpret the picture and calculate the 
localization can be designed very simple. An algorithm that does not use high computing 
power can be integrated on a simple microcontroller. This feature leads to several 
advantages like cost savings and the opportunity to miniaturize the whole sensor system. 
Another advantage is the reduced consumption when using a simple microcontroller. 
Less power consumption leads to an increase in the sensor system’s mobility and its 
autonomy.  
 
In terms of the data reduction and the simplification of the interpreting algorithm the 
precision of the method is limited and not as high as the precision of Laser Range 
Scanners. The method is particularly interesting to be used in applications where high 
precise sensor systems are too expensive and typical cheap sensor systems are too 
imprecise.  
 
Applications are possible in the context of simple household robots. Household robots 
that are used for example to clean the floor are typically equipped with so called 
“bumpers” that helps them to orientate roughly. The sensor system, described in this 
thesis could be compared with the “bumpers” in terms of manufacturing costs. 
Upgrading a household robot with the opportunity to use spatial orientation would 
highly improve its efficiency.   
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2 Main Part 

2.1 Development of the entire system 

2.1.1 General Overview 

 
Figure 2.1: Functional diagram of the entire system 
 
 
The entire system consists of two main components: The robot and the Software to 
control the robot. The software is embedded on an external PC that communicates with 
the robot via Local Area Network (LAN).  
 
The robot is equipped with two microcontrollers, one microcontroller for the sensors and 
actuators one microcontroller for the camera. The robot is further equipped with a 
WLAN-Module to be able to communicate via LAN. The central unit is microcontroller 
1. A communication with microcontroller 2 is only possible via microcontroller 1. The 
robot is only able to accept several commands afforded by the implemented protocols on 
microcontroller 1 and 2. In order to use the mobile robot as a sensor system additional 
software is required. 
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The external software consists of several subcomponents. The interface socket is the unit 
that afford data exchanges with the robot via LAN. It is used to send different commands 
to the robot in order to control its behaviour. Furthermore the interface socket is used to 
receive the requested data from the robot. The software requests for the wheel encoder 
values and data from the camera. Both incoming data is being processed. The wheel 
encoder values are being used to calculate the current robot position roughly. The 
camera data is used for detecting and tracking distinctive features around the robot. Both 
processed data is used by the algorithm to estimate the position of the tracked distinctive 
features and the current position of the robot. Important data is being showed by the 
human-machine-interface and the graphical user interface. The computed data is also 
being exported as a text-file. The human-machine-interface is further usable to control 
the robot via abstract commands. 
 
 

2.1.2 WIFI-Communication 
 

To make the communication between the robot and the computer easier, it has been 
necessary to develop a basic Software. The basic Software consists of all the functions 
implemented in the project. These functions can be divided into 3 categories with 
different objectives: first, to establish a wireless connection between computer and 
robot; they are grouped under a single socket. Another purpose is to control the robot 
wheels (wheel control function). The third objective is to measure the robot position. 
 
Socket 
As shown in Figure 2.1 the Socket ensures the information flow between the robot and 
the computer via a wireless router. The Socket works according to the client- server 
principle. The client is here the computer and the server the robot.  A simple example of 
the communication between them is shown in Figure 2.2, too. The socket is 
implemented in C and represents a quantity of functions that are used to establish and 
parameterize   the connection between the robot and the computer and if the task was 
made, will be closed. The commands that are included in these functions are   transferred 
via the wireless router to the robot. Using its WLAN cards, the robot can receive and 
executes them. 
 

 

Figure 2.2: Client – Server Communication  
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2.1.3 Robot Control 
 

The control functions send commands to the robot which cause the movement of the 
robot in a space.  This functionality is implemented by several functions (see appendix: 
Software/Omnimotion/RobotInterface.c). 
 

• driveforward ():  This function sends a command to the robot to move forward 
• drivebackward (): This function can move the robot backwards 
• rotation ():  The robot can perform this function to rotate 
• freeze (): The freeze () function stops the movement of the robot 

 

2.1.4 Robot position measurement 
 
As reminder the aim of this work is to compute the structure from point features with 
none stationary source (ego-motion) and to estimate their positions within an image 
sequence. The measurement of the current camera position (robot position) in world 
coordinates plays a major role in the estimation of these positions. Namely the algorithm 
uses the recursive least square approximation and the position of the robot is used as 
start value of this approximation.  The robot´s position is computed by the robotposition 
() function. Namely the current value of the robot´s encoders is constantly interrogated 
and incremented while driving the robot. Based on these encoder values and a simple 
mathematical approach, the position of the camera is evaluated and passed on to the 
estimation algorithm. The recording of images occurs simultaneously with robot´s 
movement. The algorithm thus receives data input packets consisting of an image 
sequence together with the corresponding camera position recorded during the trip. An 
example of an image sequence is shown in Figure 2.3. The points represent the positions 
where the images and the camera positions were stored. 
 

 

Figure 2.3: Robot position measurement 
 

 

 

 

Pictures Camera position 
(X,Y,θ) 

1 (x1,y1, θ1) 
2 (x2,y2, θ2) 
… … 
n (xn,yn, θn) 

 



  13 

640 

480 

2.1.5 Camera Data Processing 
 

The camera data processing comprises getting pictures from the robot’s camera and 
processing them to be usable for further application. This functionality is implemented 
by two functions (see attached CD: C-Code (software)/Omnimotion/RobotInterface.c). 
 

• getCamData() 
• DataToPic() 

 
Detailed flow diagrams to both functions are attached in the appendix (see appendix A, 
B) 
 

2.1.5.1 getCamData() 
 
The function getCamData() is used to get the data of one picture from the robot’s camera 
controller. 
Before requesting for one picture several adjustments has to be done: Normally the 
camera controller sends the data of one whole captured picture (640x480 pixels). As 
described in Chapter 1.1 (Detailed Task Description) the camera controller is able to 
extract the most interesting part of the picture through cutting a ring consisting of 
256x12 pixels. In order to get the ring-data instead of the whole-picture-data the camera-
controller needs to be adjusted. 
 
 

Figure 2.4: Extraction of the ring 
 
Another adjustment that has to be done before requesting for one picture is the camera 
offset setup. In terms of manufacture tolerances of the camera and the emissive sphere it 
is most probable that the cut ring is not well-positioned. That leads to a skewed picture 
and therefore to the problem that interesting information around the robot would not be 
viewable correctly. An adjustment is done through redefinition of the position where the 
ring is cut out. 
 
After all adjustments have been done a request for one picture is sent. The function 
getCamData() thereupon waits for incoming data. As soon as it receives one picture is 
returns the data. 
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256 pixels 
12 pixels 

2.1.5.2 DataToPic() 
 
The function DataToPic() is used to convert the incoming camera data into a “real” 
picture consisting of pixels. The data format of the raw camera data is arranged as 
follows: 
 

 

Figure 2.5: raw camera data 
 
In the first step the pixel value is calculated from the top- and the bottom-byte. The pixel 
value contains information about the pixel’s colour. 
 
 

Figure 2.6: calculation of the pixels 
 
Referring to the ring that was cut out by the camera controller the pixels do not have the 
correct order. In order to use the data as a ring in a spread format a reordering of the 
pixels has to be done. Therefore two lookup tables, one for the x-position, one for the y-
position are used to bring the pixels into the right order. 
 
 
 

Figure 2.7: Rebuilding and spreading of the ring 
 

Top-byte 
Bottom-byte 

… 

1pixel 

6144 bytes 

3072 pixels 
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The returned picture is usable for instance to show it on the screen or to do further 
processing. 
 
 

2.1.6 Camera Data Analysis 
 

In order to analyse and interpret the robot’s view of the environment it is necessary to 
introduce some conventions first. 
It does not make sense to aspire correct interpretations of the environment around the 
robot in every possible viewable scene. In contrary it is reasonable to prove the practical 
functionality of the localization algorithm first under defined optimized artificial 
laboratory conditions. These definitions allow focusing the development of the 
interpretation algorithms. 
 
The defined laboratory conditions are described as follows: 
 

• The viewable scene has an expansion of maximal 2 m² and is protected from 
external influences like light sources or irritating objects with the help of walls. 

• The scene is well illuminated. 
• The obstacles are immobile. 
• The obstacles that help the robot to orientate are coloured red, green or blue. 
• The obstacles are higher than at least 100mm 
• The obstacles has a diameter of at least 50mm and maximum 200mm 

 
The analysis and interpretation of the viewable scene around the robot is being carried 
out in two steps. The first step is the analysis of the picture in order to find distinctive 
points or objects. The second step is to assure that a distinctive point or object will be 
recognized in future pictures. This is implemented by the following two functions (see 
appendix: C-Code (software)/Omnimotion/Featuretracking.c).  
 

• featuredetection() 
• featuretracking() 

 

Detailed flow diagrams to both functions are attached in the appendix (see appendix C, 
D) 
 

2.1.6.1 Featuredetection() 
 
The function featuredetection() is used to analyze the picture in order to find distinctive 
points or objects. The feature detection that is implemented is specialized in the 
identification of coloured objects. 



16  MAIN PART 

In the first step three new pictures are built using the incoming picture and contain the 
information of the picture’s red- green and blue-intensity. The following steps are done 
for each of the three pictures (red, green and blue). 
 
In order to separate interesting parts of the picture that could be an indication for 
distinctive objects a segmentation is done. This is carried out by a comparison of each 
pixel’s intensity with the average intensity of the whole picture. A pixel becomes the 
property “threshold positive” if its intensity exceeds a defined limit which depends on 
the average intensity. 
 
An additional noise filter could be optionally used in this part of the function to 
eliminate isolated threshold positive pixels. 
 
After getting regions that could represent an interesting object these regions first have to 
be classified as valid. The validation is done by measuring the regions expansion in x- 
and y-direction of the picture. After classification of the region as valid the feature 
extraction can be done by calculation of the region’s center. The calculated value is the 
angle under which the robot “sees” the detected object. 
 
The angle and the colour of the detected feature are written into a list of features that is 
returned by the function. 
 

2.1.6.2 Featuretracking() 
 
The function featuretracking() is used to recognize features that were already detected in 
past pictures. To handle new detected features and the problem that features could be 
lost are also important tasks which are implemented in that function. The loss of an 
object could naturally be effected by changing of the robot’s perspective due to its 
movement. A detected object can disappear (see Figure 2.8: blue object) for a moment 
because of being covered by another object (see Figure 2.8: red object). 
 
 

 
 
Figure 2.8: Temporary loss of a feature 
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With respect to that problem a lost feature will be kept “alive” for a short time in order 
to keep the possibility to redetect it. 
 
In the first call of the functions no tracked features are available. Because of that fact all 
detected features are written into a new featurelist that contains the tracked features. All 
copied features get the certainty-level of 1. 
 
In the following calls of the function each detected feature is compared with each 
tracked feature. If the colour is equal and the position similar the detected feature is 
considered as recognized. Within the list of tracked features the position of this feature is 
updated and its certainty-level is incremented.  
 
New detected features are added to the list of tracked features and get a certainty-level of 
1. 
 
Old features that are lost for one moment loose one certainty-level. This is done step-by-
step until the level attenuated to 0. Then the feature is marked with an illegal position 
value that shows that it is absolutely lost and could never be recognized. 
 
The tracked features are returned by the function in a list of features. 
 
 
Preparation of the data for the localization algorithm 
 
In order to calculate the positions of the objects around the robot the localization 
algorithm needs tracked features from a sequence of captured pictures. This sequence is 
generated through collecting the data of a limited number of pictures all over the way the 
robot moves through the scene (see Figure 2.9: green dots).  
 
 

 
 
Figure 2.9: Collecting data 
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The collected data is arranged as follows: 
 
 
 
 
 

Figure 2.10: Collected data 
 
 
 

2.1.7 Localization Algorithm 

2.1.7.1 Problem description 
 

The problem we have to solve is as follows: our robot moves in an unknown 
environment and has to determine positions of obstacles seen by the feature tracking 
and the position of the camera/robot itself. Indeed, the concept of ego-motion is the 
“computation of camera motion from a sequence of images” [2]. This sequence is built 
with pictures taken during the movement of the robot and will be used to deduce the 
positions of both features and camera. 

 
 
Figure 2.11: Schematic view of a short move in a 4-obstacles environment 
 
The obstacles are supposed immobile, each one bring therefore 2 unknowns (abscissa 
and ordinate) in the problem. The camera move and we have to be permanently able to 
estimate its position/orientation, i.e. we must be able to calculate its trajectory (dashed 
line). 
 

Picture Feature1 Feature2 Feature3 … Feature n 
1 colour1, Φ1 colour2, Φ2 colour3, Φ3 … colour n, Φn 
2 colour1, Φ1 colour2, Φ2 colour3, Φ3 … colour n, Φn 
3 colour1, Φ1 colour2, Φ2 colour3, Φ3 … colour n, Φn 
… … … … … … 
m colour1, Φ1 colour2, Φ2 colour3, Φ3 … colour n, Φn 
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To find a solution we have to use the available measurements. These are the angles 
under which the features are seen and come as output of the feature tracking. Figure 2.12 
shows those measurements in the case where the camera detects 2 features. 

 
Note that sensors on the robot’s wheels might be able to give a piece of information 
about the position of the camera. These data must however be carefully processed: their 
values depends strongly on the environment (type and inclination of the floor…etc). 
 

 
 
Figure 2.12: Data measured by the feature tracking 
 

2.1.7.2 Problem modelling 
 
The coordinates of the camera are stored in a 3-dimensional vector: (X_Cam, Y_Cam, 
θ_Cam). Those are the abscissa, ordinate and angle to the origin, which is taken at the 
start point of the camera. These 3 components are together called “pose” of the camera. 
Each Feature is localized by its abscissa and ordinate: (X_Feat, Y_Feat) in the same 
coordinate system. 
 

 
 
Figure 2.13: Schematic representation of all parameters for a given feature at a certain 
position 
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For the k-th feature, at the j-th position (actually the position corresponding to the j-th 
picture saved in the sequence of the feature tracking), we have the following relation: 
 
Φj,k = atan2(Y_Feat[k]-Y_Cam[j], X_Feat[k]-X_Cam[j]) - θ_Cam[j]  (2.1) 

 
With respectively N and M (valid) features and pictures, our system reaches the size of 
M*N equations (k=1..N and j=1..M). 

The unknown parameters are X_Feat, Y_Feat for N features and X_Cam, Y_Cam, 
θ_Cam for M pictures. We store all unknowns in a big unknown vector: 

 
p=( X_Feat[1:N], Y_Feat[1:N], X_Cam[1:M], Y_Cam[1:M], θ_Cam[1:M]) (2.2) 

 
As the unknown vector’s size is 2N+3M, we will get a unique solution only if 
 

MNMN ≤+ 32  i.e. ≥M
3

2

−N

N
 with  4≥N       (2.3) 

 
Note that the condition 4≥N  limits our algorithm to environment containing 4 features 
or more 
 

2.1.7.3 Solution of the equation system 
 
We are now facing the following mathematical problem: 

 
f(p) = Φ     (3.1) 

 
where f is a nonlinear function from R2N+3M to RMxN. 

Solving such a problem with an analytical method is never easy, considering that the 
minimal number of equations is reached for N=4 (which implies M=8, see (2.1)), and is 
equal to 4x8 = 32. Moreover, the measured values of Φ are subject to errors and 
uncertainties, which exclude an exact solution. The method to use is therefore an 
optimization method which can solve nonlinear multidimensional problems. Methods 
based on least squares approximation seem to be well adapted to such a problem: even 
with over-determined systems (happens when MN>2N+3M), these methods will try to 
find the solution which best fits the data. 

However, such methods need a start point for the unknown vector p, otherwise the 
algorithm could get stuck at a local minimum, far from the real solution. This is where 
we use the data from the wheels sensors, giving starting values for X_Cam[1:M], 
Y_Cam[1:M] and θ_Cam[1:M]. Starting points for X_Feat[1:N] and Y_Feat[1:N] can 
then be found from these values and Φ (see simulation). 
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2.1.7.4 Simulation with Matlab 

In order to get acquainted with the resolution of the problem and the behavior of the 
algorithm in this particular case, we first programmed a simulation with Matlab. We 
simulated features and several successive positions of the camera. The trajectory, 
number/positions of features and number of camera poses were completely 
customizable. To simulate the uncertainties/perturbations of the real system, we added 
white noise to all components of the pose of the camera.  

In Matlab, a function that performs the least squares approximation like we want it to is 
the lsqnonlin function. We let this function run with different configurations, and 
numerous times with the same configuration to estimate the influence of the white noise 
(=perturbations). For each simulation, the real trajectory differs from the programmed 
one because of white noise. We calculate the angle under which feature is seen from the 
position of the feature and the (real) pose of the camera. We then run lsqnonlin with our 
nonlinear equation system (3.1) as input. Finally, the simulation plots (with animations) 
the trajectory of the robot, returns the real position of the features, the first evaluation of 
these positions (see below) and the positions after least squares optimization. 

 

           

(a) (b) 
 
 
 
 
 
Figure 2.14: Simulation with a “complex” trajectory (a); Simulation with a straight line trajectory (b) 

The position of each feature is first evaluated from 2 poses of the camera (these poses 
are deduced from the wheel sensors in real case). This first evaluation is critical and can 
lead to aberrations if the algorithm gets stuck at a local minimum. In the previous 
examples, the results (particularly the position of the red-circled feature of Figure 2.14) 
were worse in the straight line case, no matter which points of the trajectory were used 
for the evaluation. Least squares approximation is then able to calculate new values of 

       X Center of the robot 
Feature 

• Orientation of the robot (direction of the front part) 
Robot in its first and last position 
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the position by considering the whole trajectory. Final values present (in almost all 
cases) an improvement in comparison to the first evaluation. 

 

How the features positions are first evaluated 

 

           

 
 
 
 
 

Figure 2.15: First evaluation of the position 
 

To evaluate the position of the feature from 2 poses A and B of the trajectory, we apply 
the formula: 

ACamXFeatX

ACamYFeatY
A

___

___
)tan(

−
−=+Α ϕθ  

BCamXFeatX

BCamYFeatY
BB

___

___
)tan(

−
−=+ ϕθ  

 
We can then deduce the expression of X_Feat and Y_Feat in function of the other 
parameters. 
 
How to select a good first-position-evaluation for each feature 
 

  

         

 

Figure 2.16: Bad configuration for the first evaluation of the position of a feature 
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Figure 2.16 shows bad conditions to evaluate the position of the feature: a slight error on 
the orientation of the camera or due to the feature tracking can have a huge influence on 
the resulting position of the feature. 
In the 2nd case (Figure 2.17), the conditions are much better: abs(α) ≈ 90° 
 

 

          

 
Figure 2.17: Better configuration for the first evaluation 
 
If we use the previous denominations (with poses A and B) the expression of α is the 
following: 

α = ( BB ϕθ + ) - ( Aϕθ +Α ) 

 
 With a straight line trajectory, the optimal condition (abs(α) ≈ 90°) can hardly be 
reached, particularly when a feature is situated on the axis of this line (see Figure 2.14 
(b)), this is why it is strongly recommended to let the algorithm run after a complex 
trajectory. Once the first evaluation of each feature position can be “correctly” evaluated 
(the deduced coordinates must have the same sign as the real coordinates and their 
absolute value must not exceed the one of the real coordinate by more than 200%), then 
the performance of the least squares algorithm can be judged satisfying (error < 15%). 
With a more complex trajectory, we can get closer to the criteria abs(α) ≈ 90° and the 
error can then easily falls under 10%. 

 

2.1.7.5 Implementation in C 
 
Global structure of the localization algorithm 
 
In our simulation, it was easy to get data to work with: we just simulated the outputs of 
feature tracking and wheel sensors in an adapted format. In the real case, we had to 
integrate the localization algorithm with other components of our system. Three steps of 
the algorithm are important to understand its global functioning: filter feature tracking 
data, first estimation of features positions (as we did in the simulation) and least squares 
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approximation. Figure 2.18 shows these three steps and the inputs/outputs of the 
localization algorithm. 
 

 

          

 
Figure 2.18: Global structure of the localization algorithm 
 
The function performing the least squares approximation was chosen in a library called 
levmar [3].  To compile the code, the BSD-licensed package LAPACK is required, as 
well as BLAS (Basic Linear Algebra Subprograms) and eventually ATLAS 
(Automatically Tuned Linear Algebra Software). We selected dlevmar_bc_dif() instead 
of other functions because its format corresponds to what we are trying to solve (like 
lsqnonlin in Matlab) and it lets the possibility to set lower and upper bounds to the 
solution, preventing the algorithm from converging to absurd values in case of wrong 
estimation before the least squares approximation. 

 

Filter data from feature tracking 
 
Although our feature tracking already selects the features which are more likely to 
correspond to real obstacles, the localization algorithm cannot work with “invalid” data. 
Indeed, even during a short run, all features are not always visible, feature tracking then 
returns a corresponding alternative value (777 or 999, see 2.1.6 Camera Data Analysis). 
This is why we first filter the returned values from feature tracking. Figure 2.19 shows 
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how we proceed: we first eliminate features which are too often absent (grey cells, 
features k-1 and k+1) and then, given the remaining features, we keep the pictures (= 
array’s lines) containing only valid values (normal/white cells). On  Figure 2.19, pictures 
1 and 2 have been deleted (strike) because feature k was not yet identified (bold) by 
feature tracking, in the same way picture M has been deleted because of the 
disappearance of feature 2. At the end of filtering, we send all valid values (normal 
cells), as a new array (corresponding to the measured values of Φ), to the least squares 
function. 
 

 

          

 
Figure 2.19: Filtering applied to an array returned by feature tracking 
 

Nevertheless, deleting invalid features results of arbitrary choices: how many times must 
a feature be seeable (resp. absent) to consider it as a valid (resp. invalid) feature? By 
eliminating too many features, the result could be incomplete (real obstacles missing), or 
the number of seen features could be too low (must be > 3M/(M-2) according to (2.1)) 
and prevent least squares function from working. On the contrary, by not eliminating 
enough features, the number of pictures can be too low (must be > 2N/(N-3)). 
 
We created a parameter called MISSING_FEATURES_COUNTER as a tolerance limit 
for each feature, before being regarded as an invalid feature. When the number of invalid 
pictures for a feature becomes greater than MISSING_FEATURES_COUNTER, this 
feature is deleted from the array. The right value of MISSING_FEATURES_COUNTER 
depends of course on the sensitivity of the feature tracking and on the number of pictures 
M returned. In our experiment, we tested different values of 
MISSING_FEATURES_COUNTER, M and feature tracking sensitivity. 
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Least squares approximation 
 
 dlevmar_bc_dif() uses the Levenberg-Marquardt  method to minimize the sum 
of squares of nonlinear functions. Our problem is the following (see (3.1), (2.1) and 
(2.2)): f(p)= Φ 
 

with   p=( X_Feat[1:N], Y_Feat[1:N], X_Cam[1:M], Y_Cam[1:M], 
θ_Cam[1:M]) 
  f j,k(p) =   atan2(Y_Feat[k]-Y_Cam[j], X_Feat[k]-X_Cam[j]) - θ_Cam[j] 
   =   atan2(p[N+k] - p[2N+M+j], p[k] - p[2N+j]) – p[2N+2M+j] 
   =   Φj,k 
 
Note that after the filter we get new values from M and N (smaller than those in Figure 
2.19). 
 
In our case, we call dlevmar_bc_dif() with the following parameters (see appendix E for 
prototype): 
 

dlevmar_bc_dif( f, p, Φ , M, N, lb, ub, MaxIter, opts, info, NULL, NULL, NULL); 
 

The given p contains the first evaluation of all unknowns. 
lb is the lower bound for vector p 
ub is the upper bound for vector p 
MaxIter = maximal number of iterations 
opts contains the minimum options for the approximation of the Jacobian of f  
 
Note: lb and ub can be define in relationship with the first approximation of p 
 
After the function has run, p contains the calculated solution. 
 

 

2.2 Evaluation of the entire system 

2.2.1 Laboratory Setup 
 

In order to test the algorithm in the real world, an experiment environment was set up. 
This environment has to offer optimal conditions in order to observe the system 
behavior. Indeed, before testing the system in extreme conditions, it has to prove its 
efficiency in a favorable environment. Our experiment environment is shown on Figure 
2.20. Boxes (a) are used as walls/limits and protect the scene from external influences 
like light sources or moving objects. The green, blue or red objects (b) are the obstacles 
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(=features) that the robot will have to localize. These features are placed on green points. 
These green points (c), placed every 20cm on the floor, are used as marks to estimates 
the coordinates of objects. The algorithm depends heavily on the scene lightning, 
therefore light sources (d) were set up at the scene´s corners. An experiment consists of 
10 up to 13 testruns. In a testrun, the robot moves on a predefined path under constant 
parameters. The parameters are the changes for other experiments to test the algorithm’s 
accuracy, robustness and find hints to optimize the system robustness and the stability of 
algorithm. 
 
 

        

                  
 
Figure 2.20: The experimental laboratory 
 
 

2.2.2 Investigation 1 (robot) 
 
Description 
 
The first investigation consists in observing the behavior of the algorithm by different 
robots. There are two robots: a blue one and a red one. The two robots have to move 
forward while tracking the features and estimate their positions. The first and the sixth 
experiments consist of 5 Features, the ninth and the tenth of 6 Features.  
 

(b) 

(d) 

(c) 

(a) 
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Experiment Parameter(robot) 
1 Blue 
6 Red 
9 Blue 
10 Red  

Figure 2.21: Configurations of investigation 1 
 
Results and Interpretation 
 
The following data is an extraction from the whole test evaluation. The detailed results 
of investigation 1 are documented in an excel sheet that is archived on the attached CD 
(see folder: Investigations) 
 
 

Experiment Parameter(robot) average error 
x (abs. value) 
[m] 

average error 
y (abs. value) 
[m]nu 

Number of the 
none  tracked 
features 1 Blue 0.05 0.06 0 

6 Red 0.10 0.05 1 
9 Blue 0.10 0.06 0 
10 Red 0.03 0.05 2 

Figure 2.22: Results of investigation 1 
 
This data show significant deviation by the x estimation. This is not because of the 
robot, but the reason can be, that the number of features has been augmented.  In the 
analysis of the result it was also observed that the red robot has difficulty to track green, 
blue and red features. This lower sensitivity of the red robot could be explained by the 
camera quality. Although both robots are equipped with the same camera model, two 
different copies can present slight differences; the camera should therefore be calibrated 
for each robot. An amelioration of the red robot results can be achieved with a specific 
calibration of sensitivity.    
 

2.2.3 Investigation 2 (localization algorithm) 
 

Description 
 
The localization algorithm has two essential parameters which could influence the 
quality of the localization results. The first parameter is the number of pictures that are 
used by the localization algorithm to do its calculations (picture means in this context: 
features extracted from the pictures and the measured robot position). The second 
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parameter is the accepted maximum value of pictures that could not be used for 
calculation in terms of invalid or lost features.  
In investigation 2 two different parameter setups are tested: 
 

• 12 pictures and thereof max. 3 invalid pictures 
• 16 pictures and thereof max. 4 invalid pictures 

 
In the first setup min. 8 pictures and in the second setup min. 12 pictures are used to 
calculate the feature’s and camera’s position. 
 
The investigation includes testruns with two different robots, a red one and a blue one. 
This should avoid interpreting influences that are effected by differences of the robots. 
The following table shows the different configurations of the investigation: 
 
 

Configuration Robot Parameter-Setup Number of testruns 
1 Red 12 / 3 10 
2 Blue 12 / 3 10 
3 Red 16 / 4 10 
4 Blue 16 / 4 10 

Figure 2.23: Configurations of investigation 2 
 
  
Results and Interpretation 
 
The following data is an extraction from the whole test evaluation. The detailed results 
of investigation 2 are documented in an excel sheet that is archived on the attached CD 
(see folder: Investigations). 
 
 

Configuration Parameter- 
Setup 

average error x 
(abs. value) 
[m] 

average error y 
(abs. value) 
[m] 

Number of 
failed testruns 

1 12 / 3 0.05 0.06 2 
2 12 / 3 0.10 0.05 5 
3 16 / 4 0.13 0.05 0 
4 16 / 4 0.09 0.06 1 

Figure 2.24: Results of investigation 2 
 
Data analysis show that an increasing of the number of pictures that are used by the 
localization algorithm to calculate the feature’s and the camera’s position does not 
influence the localization results. The variety of the localization results is neither 
identifiable nor significant. 
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However, the data shows a significant positive influence on the number of failed 
testruns. This can be considered as an opportunity to optimize the system in terms of 
robustness. But note that an increasing of the number of pictures used to calculate the 
localization has a negative impact on the required computing power.  
 

 

2.2.4 Investigation 3 (featuretracking) 
 

Description 
 
The featuredetection algorithm has several parameters which could influence the quality 
of the localization results. The parameters can be used to adjust the featuredetection in 
terms of its sensitivity. The parameters that are varied within this investigation are the 
sensitivity for red, green and blue objects. 
 

• LIMIT_RED 
• LIMIT_GREEN 
• LIMIT_BLUE 

 
In the first setup the featuredetection is adjusted low sensitive; in the second setup it is 
adjusted high sensitive. 
The investigation includes testruns with the red and the blue robot. This should avoid 
interpreting influences that are effected by differences of the robots. In terms of 
manufacture tolerances of the cameras, the blue and the red robot need different 
parameter-values for a similar practical behaviour of the featuredetection. 
 
The following table shows the different configurations of the investigation: 

  Configuration Robot Parameter-Setup Testruns 
1 Blue LIMIT_RED = 180 

LIMIT_GREEN = 115 
LIMIT_BLUE = 90 
(low sensitive) 

10 

2 Red LIMIT_RED = 175 
LIMIT_GREEN = 110 
LIMIT_BLUE = 87 
(low sensitive) 

10 

3 Blue LIMIT_RED = 175 
LIMIT_GREEN = 110 
LIMIT_BLUE = 87 
(high sensitive) 

10 

4 Red LIMIT_RED = 144 
LIMIT_GREEN = 108 
LIMIT_BLUE = 88 
(high sensitive) 

10 

Figure 2.25: Configurations of investigation 3 
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Results and Interpretation 
 
The following data is an extraction from the whole test evaluation. The detailed results 
of investigation 3 are documented in an excel sheet that is archived on the attached CD 
(see folder: Investigations). 
 

 

Configuration Parameter-
Setup 

average error x 
(abs. value) 
[m] 

average error y 
(abs. value) 
[m] 

Number of 
failed testruns 

1 low sensitive (blue 
robot) 

0.12 0.09 1 

2 low sensitive  
(red robot) 

0.03 0.05 1 

3 high sensitive 
(blue robot) 

0.14 0.07 0 

4 high sensitive (red 
robot) 

0.11 0.06 0 

Figure 2.26: Results of investigation 3 
 
Data analysis shows that an increasing of the featuredetection’s sensitivity does not 
influence the localization results. The variety of the localization results is neither 
identifiable nor significant. 
 
However, the data shows interesting information in the testruns 1&9 of configuration 3 
and in testrun 9 of configuration 4. One example is showed as follows: 
 

 
 
Figure 2.27: Results (detail) of investigation 3 
 
 
The table shows a feature, detected and tracked in testrun 1 of configuration 3 that does 
actually not exist. Features that are used by the localization algorithm, although they 
does not exist, will disturb the calculation of the position of other features and finally 
also the calculation of the camera position. 
The estimated position of feature “b2” may “suffer” from the additional detected feature 
that does not exist. All other testruns of this configuration show a sufficient estimation 
of the position of feature “b2”.  
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The localization results cannot be improved by increasing the featuredetection’s 
sensitivity. In contrary, this measure effects the detecting and tracking of non-existing 
features in certain cases. The assumption that these non-existing features disturb the 
localization results could be verified for several testruns. 
 
 
 

2.2.5 Investigation 4 (trajectory) 
 
Our 4th investigation aimed to compare the results obtained in a same environment with 
two different trajectories: a straight line (T1) and a little more complex trajectory (T2): 

 

Figure 2.28: Configurations of investigation 4 
 

Our environment consisted of 6 features including one on the axis of the “straight line 
trajectory” (F4). This was thought to show what we saw with the simulation: the final 
localization of features should be better with T2, mainly due to the first estimation of 
F4’s position. 
 
We then compared errors of feature localization for a total of 47 testruns (28 for T1 and 
19 for T2), with different values of feature tracking sensitivity. 
The results do not show any improvement in the feature localization, we even notice a 
precision degradation for a certain sensitivity of feature tracking. By analyzing all 
measurements, we saw that too many features were “recognized” (imaginary features 
were “seen”) although this didn’t happen during T1 with the same sensitivity. Of course, 
those features disturb the global results of least squares approximation: the algorithm 
tries to optimize a set of parameters from aberrant values. 
 
This experiment shows the critical importance of the set of parameters feature tracking 
sensitivity/filtering of feature tracking data. In order to correctly evaluate the behavior of our 
system in such a situation, we should therefore optimize these parameters first, and then retry 
this experiment. 
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3 Summary 

3.1 Critique and conclusion of the essential results 

The project’s objective was about to prove the practical functionality of an algorithm 
using features from a spatial environment to orientate and to provide the possibility for 
egomotion. Base of the project is a small mobile robot that is equipped with an 
omnidirectional driving system, a camera and an emissive sphere, theoretically able to 
orientate in a spatial environment. In order to control the mobile robot using a 
localization algorithm, software was developed within this project. This software runs on 
an external PC and communicates with the robot platform via WLAN.  
 
The detection and tracking of distinctive objects around the robot could be implemented 
and was evaluated under optimized laboratory conditions.  
 
A rough measurement of the robot’s movement could be implemented by capturing the 
incremental encoders of the omnidirectional wheels. This data is strongly influenced by 
the environment (type and inclination of the floor) and therefore could only be 
considered as a support for the calculation of the localization algorithm. 
 
A localization algorithm was implemented and evaluated under optimized laboratory 
conditions. It uses the angles under which distinctive features are “seen” as well as the 
rough measurement results of the robot’s movement to estimate the feature’s and the 
robot’s (the camera’s) position within the spatial environment. 
 
The position estimation of the localization algorithm has a limited accuracy, but in the 
context of the laboratory setup the results can be considered as satisfying. In case of 
detecting and tracking too few features from the spatial environment, failure 
measurements may occur.  
 
Investigations on the system within the laboratory setup provide information about 
opportunities to improve the localization algorithm’s accuracy as well as the probability 
for occurrences of failure measurements. Possible optimizations are described as 
follows. 
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Camera resolution limitations 
 
In terms of saving costs and required computing power the resolution of the camera is 
limited. That limitation effects an error that cannot be considered as insignificant.  
The resolution of possible angles between 0° and 360° is approximately 1.4°. Hence an 
error of 1.4° has to be expected in the worst case.  
The impact on the localization results depends on the distance between the robot and the 
detected object. A calculation with the law of cosines results that an object that is 
positioned 1 m afar from the robot could be considered as approximately 2.5 cm away 
from the actual “real” position due to the camera’s resolution limits. 
 
 

 
 
 

Figure 3.1: Camera resolution error 
 
 
 
Featuretracking 
 
Imprecise localization results can be effected by imprecise featuredetection and 
featuretracking results. 
Errors could for example result due to a miscalculation of the detected object’s center: 
Not every object is well illuminated from every possible direction the robot may “see” it. 
This can effect that only half of the object is detected and hence the object’s center may 
be “shifted” to one direction (see Figure 3.2: Problems caused by partial illumination). 
The impact on the localization results depends on the distance between the robot and the 
detected object. Near objects that have temporary the described properties will effect a 
bigger error than objects that are far away. 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.2: Problems caused by partial illumination 

∆Φ ≈ 1.4° 

right angle 

wrong angle 

light source 
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Errors can also occur because of feature losses. The classification of an assumed object 
as valid depends on how big it appears in the picture. Hence an object that is too far 
away could not be detected and will be lost or never “seen”. In addition it is possible that 
the featuretracking gets confuse by the occurrence of too many features, because new 
features could be considered as already seen. The localization results become imprecise 
if the algorithm gets too less or wrong information about the spatial environment around 
the robot. 
 
In order to optimize the featuredetection and the featuretracking in terms of robustness 
several measures are possible. Using filters to brighten the picture or increase its contrast 
could effect a better initial situation for the implemented featuredetection. These filters 
can also be implemented adaptive to changes of the environment.  
 
An improvement is also possible through changing of the segmentation algorithm (see 
Chapter 2.1.6 Camera Data Analysis). Instead of using the whole picture to calculate the 
threshold-status of every pixel it is also possible to calculate the threshold-status in the 
context of a 3x3-Array that is shifted through the whole picture (Figure 3.3: ). This could 
provide an improvement of the algorithm in terms of problems effected by partial 
illumination. 
 
 
 
 
 
 
 
 
 

Figure 3.3: Partial segmentation 
 
Instead of using the colour intensity, other properties of the spatial environment could be 
used as well. Distinctive objects can also be detected by their edges or the type of their 
shape. This could also improve the interpretation algorithm in terms of problems 
effected by partial illumination or the independence from illumination itself. 
 
The optimization opportunities of the featuredetection and the featuretracking are 
manifold. Further investigation has to be accomplished to predict which optimization 
opportunities might have the most positive impact on the system’s robustness. 
 
 
Least squares approximation 
 
The localization algorithm, as it is now implemented, is not devoid of intrinsic 
imperfections. Before implementing it on a master controller, we would have to reduce 
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its needs in calculation power. Indeed, during our experiments, we measured the time 
needed to process data with two different platforms: 

• PC from CCRL: CPU = AMD Phenom 9850 (Quad-Core, 2.5GHz), 4GB RAM 

• Netbook: CPU = Intel Atom N270 (Single-Core, 1.6GHz), 1GB RAM 

With the first configuration, the average processing time was around 400ms and with the 
second one, around 1.8s. By extrapolating this data, we can easily realize that it cannot 
be adapted to an embedded microcontroller. 
 
A combination of solutions might make it possible, among those we already listed: 

• linearization of atan2 in our nonlinear equation system (if estimations are good, 
the algorithm always works around a same point) 

• change parameters of dlevmar_bc_dif() (reducing iterations limit, enhancing 
tolerance on result…) 

  
 
Filtering of feature tracking data 
 
In real case, the biggest problem we had was to recognize features; we therefore tried to 
optimize parameters related to the filtering of feature tracking data. We pointed out the 
crucial importance to harmonize the filtering parameters to the feature tracking 
sensitivity: when the sensitivity is too high and the filtering not strict enough, imaginary 
features can be “seen”, which affects all results (localization of features/camera); and 
when the sensitivity is too low and the filtering too strict, real feature can be “unseen” 
which can lead to collisions with obstacles. 
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Appendix 
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Appendix A: Flow Diagram of function getCamData() 
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Appendix B: Flow Diagram of function DataToPic() 
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Appendix C: Flow Diagram of function featuredetection() 
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Appendix D: Flow Diagram of function featuretracking() 
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Appendix E: Prototype of dlevmar_bc_dif() (see [3] for more details): 

 
int dlevmar_bc_dif( 
       void (*func)(double *p, double *hx, int m, int n, void *adata), 
       double *p, double *x, int m, int n, double *lb, double *ub, 
       int itmax, double *opts, double *info, double *work, double *covar, void *adata); 
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