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Abstract

Orientation within a spatial structure could simlg implemented by tracking point
features in images captured by a moving video soubtie to perspective changes,
provided by the moving video source, it is posstblénfer the motion of the camera, as
well as the position of the tracked features.

This work describes the development and evaluaifoa system practically using this
method. Based on a small mobile robot, the aim wasmplement appropriate
algorithms in order to prove the practical functbty of “Ego-motion and Structure
from Point Features”.

The developed system is equipped with a featuiekitrg algorithm that detects and
tracks coloured objects.

Wheel sensors, attached to the robot are used sordagh measurement of the robot’s
position. Both tracked features and rough robotitioos are used by a localization
algorithm to calculate the feature’s as well asd@mmera’s position.

The developed system was evaluated under optinfebediatory conditions. It showed a
good functionality with limited accuracy. This wogdives explanations for the lack of
precision and proposes measures to optimize tle eystem.
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Computing Ego-Motion and Structure from Point Features

Problem description:

When viewing video footage from a non-stationary source, it is possible to infer the motion of the
camera, as well as the structure of the viewable scene, simply by tracking point features in the image.
Such calculations are commonly referred to as solving the "ego-motion and structure” problem, which
has attracted much attention over the years. We have recently developed a very simple and efficient
algorithm that is designed to be practical for real-time applications with limited hardware resources
that require a continually-maintained estimate of position and/or spatial structure. Good examples of
such systems are small and inexpensive mobile robots.

The algorithm performs visual point tracking in a circular 360deg field of view, and updates its feature
position estimates with every new observation. In a second pass it relies on the feature position
estimates to update its ego motion estimate. So far we have only implemented the algorithm in a
simulated environment; however, we believe that the algorithm is sufficiently simple to ultimately run
on a standard microprocessor (32bit, 60MHz) on board of small mobile robots.

Tasks:

In this "Practical Project” the student(s) will get a mobile robot with an omni-directional circular
camera that initially connects to the local computer network through WLAN. In a first stage, the
student(s) will implement the algorithm in C on a Linux computer and evaluate its real-world perfor-
mance. During a second stage the student(s) will convert the algorithm to run on a microcontroller
(still in C) on-board of the mobile robot. Such an algorithm running on tiny on-board hardware with
low communication latencies will ultimately allow very fast robot motion for small robots equipped
with cheap sensors.
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1 Introduction

1.1 Detailed Task Description

During this project, we had to implement an aldontin C on a Linux system to control
the robot of Figure 1.1 (a). The robot has a di@met 200mm and is 260mm high. It
consists of 3 multi-directional wheels with incremea encoders, two microcontrollers, a
WLAN card, a CMOS camera and a tube on which arggdenirror is mounted.

The 3 multi-directional wheels are up 120 degreesnfeach other. This allows a
translational movement in the x and y-direction andbtational movement around the
robot center. On the basis of incremental encodleesywheels rotation can be recorded.
The wireless card allows communicating with theotobia WLAN, and sending
different commands.

The sensor used in the system is a CMOS color @rftedectronics, VS6524). The
camera resolution is 640x480 pixels. Images of 4&@x480 pixels can be recorded at a
frequency of 9Hz in a memory. The typically appiicas of this camera can be found in
mobile phone and video phone.

The core of the system is a spherical mirror atddio a tube, which is the “eye” of the
robot. Namely, the camera is oriented toward theespal mirror to get a 360 panoramic
view from the current robot environment. The caneapture of the spherical mirror is
shown in Figure 1.1: mobile robot (a); sphericaironi (b) (b).

The aim of the introduced project is —based onlyhes mobile robot with cheap camera
sensor- to implement an algorithm that allows tbkot to analyze its environment.
Namely, in a scene that includes features (obstamidandmarks) with different colors
and in different ratio, the robot will move and ¢agictures of its environment. The
function of the algorithm is to track this featurasd to estimate their position. The
image sequence of the spherical mirror of the ngwiobot will be use to extract
information about the features. Then using thisnmiation, the algorithm will compute
the features positions. With the help of this feaguypositions, the robot can orient itself
in its environment and, for example, return tcsitst position.
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spheric mirror

see-through tube

=& on-board
electronic

omni-directional
wheel with encoder

(b) (a)

Figure 1.1: mobile robot (a); spherical mirror (b)

1.2 Scientific Motivation

Analyzing the environment to get spatial informatie one of the most important tasks
of autonomous systems. The autonomy of robot vesidior example cars or flying
objects, depends on the collected spatial infoimnaéind its interpretation. Almost all
types of service robots, the smallest householdtrals well as complex humanoid
robots need spatial information to orientate anéutfil their tasks. Industrial robots as
well can manage by far more difficult task with phnelf spatial information. Acquisition
and interpretation of the spatial environment & ltasis of adaptive robotic systems that
work together with humans.

Today, various sensor systems are used to cappaalsinformation. The most
important types are listed below:

e Laser Range Scanner
» Ultrasonic Distance Sensor
e Stereo Camera Systems

It depends on the application which sensor systemsombination of several sensor
systems fits best to get the required quality atisp information.

Laser Range Scanners afford a big range (up to }»-&8ih a high precision (error: <=
20mm) for a relative high costs (~5000€). A ran§@7%0° around the sensor system can
be captured quasi-simultaneously. The laser lightrce as well as the mechanical
components inside the sensor system leads to aehigiigy consumption (typically ~10-
20W). [1]



Ultrasonic Distance Sensors are cheaper but lesssprthan Laser Range Scanner. The
echo of the emitted spherical sonic waves alloviSrgeinformation about the distance
but not about the precise angle of the detectedcbobEnvironmental influences like
humidity and air turbulences can strongly influetft® measurement results.

Stereo Camera Systems are relative cheap and atfbigh precision of the captured
spatial information. However, the precision depeolshe camera’s resolutions and the
complexity of the used algorithms to interpret phetures. The limitations of this sensor
system strongly depend on available computing powérich is limited by the
application.

The method that is described in this thesis ofeersew opportunity to capture and
interpret the spatial environment. The method iaratterized by its simplicity and
provides several advantages compared to methoalg tygical sensor systems.

The camera and the emissive sphere allow the cagtaf 360° around the sensor
system (robot). Hence, a changing of the sensdersys position in order to capture
other important parts of the spatial environmenha$ necessary. The picture coming
from the camera is being reduced to its essenaauttjng the most important part. The
reduced picture is used by an interpreting algoritim order to detect and track
distinctive objects (features) around the robotai@jing of the robot’'s perspective due
to its movement provides sequential data that edusy a localization algorithm to
calculate the feature’s and its own (the camergspition within the spatial
environment.

Due to the camera data reduction the algorithmstévpret the picture and calculate the
localization can be designed very simple. An akhomithat does not use high computing
power can be integrated on a simple microcontrollérs feature leads to several
advantages like cost savings and the opportunityiteaturize the whole sensor system.
Another advantage is the reduced consumption wisemgua simple microcontroller.
Less power consumption leads to an increase irséimsor system’s mobility and its
autonomy.

In terms of the data reduction and the simplifmatof the interpreting algorithm the

precision of the method is limited and not as haghthe precision of Laser Range
Scanners. The method is particularly interestindpgoused in applications where high
precise sensor systems are too expensive and ltygheap sensor systems are too
imprecise.

Applications are possible in the context of simpteisehold robots. Household robots
that are used for example to clean the floor apcaéjly equipped with so called

“bumpers” that helps them to orientate roughly. Bemsor system, described in this
thesis could be compared with the “bumpers” in &rof manufacturing costs.

Upgrading a household robot with the opportunityuse spatial orientation would

highly improve its efficiency.
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2 Main Part

2.1 Development of the entire system

2.1.1 General Overview

Robot
Software
‘ Interface- Sockef ‘ (A > Router
T i L ! WLAN-Modu Camere P
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Figure 2.1: Functional diagram of the entire system

The entire system consists of two main componeht& robot and the Software to
control the robot. The software is embedded onxa@mreal PC that communicates with
the robot via Local Area Network (LAN).

The robot is equipped with two microcontrollerseanicrocontroller for the sensors and
actuators one microcontroller for the camera. Toleot is further equipped with a
WLAN-Module to be able to communicate via LAN. Teentral unit is microcontroller
1. A communication with microcontroller 2 is onlpgsible via microcontroller 1. The
robot is only able to accept several commands @by the implemented protocols on
microcontroller 1 and 2. In order to use the mobilbot as asensor system additional
software is required.
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The external software consists of several subcoesnThe interface socket is the unit
that afford data exchanges with the robot via LANs used to send different commands
to the robot in order to control its behaviour. thermore the interface socket is used to
receive the requested data from the robot. Thevaodt requests for the wheel encoder
values and data from the camera. Both incoming tataeing processed. The wheel
encoder values are being used to calculate theerdumobot position roughly. The
camera data is used for detecting and trackingndiste features around the robot. Both
processed data is used by the algorithm to estithatposition of the tracked distinctive
features and the current position of the robot.drtgmt data is being showed by the
human-machine-interface and the graphical userfate. The computed data is also
being exported as a text-file. The human-machiterdiace is further usable to control
the robot via abstract commands.

2.1.2 WIFI-Communication

To make the communication between the robot andctimputer easier, it has been
necessary to develop a basic Software. The basiw&e consists of all the functions
implemented in the project. These functions candiwded into 3 categories with
different objectives: first, to establish a wiredesonnection between computer and
robot; they are grouped under a single socket. Weropurpose is to control the robot
wheels (wheel control function). The third objeetig to measure the robot position.

Socket

As shown in Figure 2.1 the Socket ensures the nméition flow between the robot and
the computer via a wireless router. The Socket wa&cording to the client- server
principle. The client is here the computer andgberer the robot. A simple example of
the communication between them is shown in Figur2, 200. The socket is
implemented in C and represents a quantity of fanstthat are used to establish and
parameterize the connection between the robottlEma¢omputer and if the task was
made, will be closed. The commands that are indudé¢hese functions are transferred
via the wireless router to the robot. Using its WNLAards, the robot can receive and
executes them.

Hello, can | connect? —

+— > cp
Yes, of course!

Please move the robot. ——»

Clie nt(PC) +— Ok, | have moved it Server {RO bOt)
Good bye. —_—

— Good bye. B

Figure 2.2: Client — Server Communication
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2.1.3 Robot Control

The control functions send commands to the robdthvibause the movement of the
robot in a space. This functionality is implemehby several functions (see appendix:
Software/Omnimotion/RobotInterface.c).

» driveforward (): This function sends a command to the robot to nfiomeard
» drivebackward (): This function can move the robot backwards

» rotation (): The robot can perform this function to rotate

» freeze ():The freeze () function stops the movement of tiet

2.1.4 Robot position measurement

As reminder the aim of this work is to compute #treicture from point features with
none stationary source (ego-motion) and to estirttad@ positions within an image
sequence. The measurement of the current cameittopogobot position) in world
coordinates plays a major role in the estimatiothese positions. Namely the algorithm
uses the recursive least square approximation laagasition of the robot is used as
start value of this approximation. The robot’sitims is computed by theobotposition

() function. Namely the current value of the robothsaers is constantly interrogated
and incremented while driving the robot. Based loes¢ encoder values and a simple
mathematical approach, the position of the cameravaluated and passed on to the
estimation algorithm. The recording of images oscsimultaneously with robot’s
movement. The algorithm thus receives data inpuketa consisting of an image
sequence together with the corresponding camernéigrosecorded during the trip. An
example of an image sequence is shown in FigureTA& points represent the positions
where the images and the camera positions weredstor

. Pictures | Camera position
v (X,Y,0)
..... -@ 1 (x1,y1,01)

@ 2 (x2,y2,62)
\7 @ ‘
n (xn,yn,0n)

Figure 2.3: Robot position measurement
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2.1.5 Camera Data Processing

The camera data processing comprises getting p&tirom the robot's camera and
processing them to be usable for further applicatichis functionality is implemented
by two functions (see attached CD: C-Code (softi@mnimotion/RobotInterface.c).

» getCambData()
« DataToPic()

Detailed flow diagrams to both functions are ateatin the appendix (see appendix A,
B)

2.1.5.1 getCambData()

The function getCamData() is used to get the datme picture from the robot’s camera
controller.

Before requesting for one picture several adjustméas to be done: Normally the
camera controller sends the data of one whole oagbtpicture (640x480 pixels). As

described in Chapter 1.1 (Detailed Task Descriptitve camera controller is able to
extract the most interesting part of the pictureodigh cutting a ring consisting of

256x12 pixels. In order to get the ring-data indteithe whole-picture-data the camera-
controller needs to be adjusted.

.

480

640

Figure 2.4: Extraction of the ring

Another adjustment that has to be done before stigefor one picture is the camera
offset setup. In terms of manufacture toleranceh®fcamera and the emissive sphere it
Is most probable that the cut ring is not well-posied. That leads to a skewed picture
and therefore to the problem that interesting miation around the robot would not be
viewable correctly. An adjustment is done througtiefinition of the position where the
ring is cut out.

After all adjustments have been done a requesbiier picture is sent. The function
getCamData() thereupon waits for incoming dataséasn as it receives one picture is
returns the data.



14 MAIN PART

2.1.5.2 DataToPic()

The function DataToPic() is used to convert theomig camera data into a “real”
picture consisting of pixels. The data format of ttaw camera data is arranged as

follows:

6144 bytes

v

d
<«

Top-byte .
Bottom-byte } Lpixel
Figure 2.5: raw camera data

In the first step the pixel value is calculatedhirthe top- and the bottom-byte. The pixel
value contains information about the pixel’s colour

3072 pixels

v

A

Figure 2.6: calculation of the pixels

Referring to the ring that was cut out by the caar@mtroller the pixels do not have the
correct order. In order to use the data as a mng spread format a reordering of the
pixels has to be done. Therefore two lookup taldas, for the x-position, one for the y-
position are used to bring the pixels into the trigitder.

256 pixels

<
<

> A 12 pixels
3

J--»

s

Figure 2.7: Rebuilding and spreading of the ring
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The returned picture is usable for instance to sitoan the screen or to do further
processing.

2.1.6 Camera Data Analysis

In order to analyse and interpret the robot’s vi#whe environment it is necessary to
introduce some conventions first.

It does not make sense to aspire correct intejataof the environment around the
robot in every possible viewable scene. In contitaiy reasonable to prove the practical
functionality of the localization algorithm firstnder defined optimized artificial
laboratory conditions. These definitions allow feitlg the development of the
interpretation algorithms.

The defined laboratory conditions are describefbid®vs:

* The viewable scene has an expansion of maximal &h?s protected from
external influences like light sources or irrit@tiabjects with the help of walls.

* The scene is well illuminated.

* The obstacles are immobile.

* The obstacles that help the robot to orientateal@ured red, green or blue.

* The obstacles are higher than at least 100mm

* The obstacles has a diameter of at least 50mm axdémam 200mm

The analysis and interpretation of the viewablenecaround the robot is being carried
out in two steps. The first step is the analysishef picture in order to find distinctive

points or objects. The second step is to assuteatligstinctive point or object will be

recognized in future pictures. This is implemenbgdthe following two functions (see

appendix: C-Code (software)/Omnimotion/Featuretragk).

» featuredetection()
» featuretracking()

Detailed flow diagrams to both functions are ateatin the appendix (see appendix C,
D)

2.1.6.1 Featuredetection()

The function featuredetection() is used to anatywmepicture in order to find distinctive
points or objects. The feature detection that iplémented is specialized in the
identification of coloured objects.
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In the first step three new pictures are built ggime incoming picture and contain the
information of the picture’s red- green and blutensity. The following steps are done
for each of the three pictures (red, green and)blue

In order to separate interesting parts of the pectihat could be an indication for
distinctive objects a segmentation is done. Thisaisied out by a comparison of each
pixel's intensity with the average intensity of timbole picture. A pixel becomes the
property “threshold positive” if its intensity exads a defined limit which depends on
the average intensity.

An additional noise filter could be optionally uséd this part of the function to
eliminate isolated threshold positive pixels.

After getting regions that could represent an gdéng object these regions first have to
be classified as valid. The validation is done bgasuring the regions expansion in x-
and y-direction of the picture. After classificatiof the region as valid the feature
extraction can be done by calculation of the regi@enter. The calculated value is the
angle under which the robot “sees” the detectedatbj

The angle and the colour of the detected featweenaitten into a list of features that is
returned by the function.

2.1.6.2 Featuretracking()

The function featuretracking() is used to recogrieagures that were already detected in
past pictures. To handle new detected featuresttangroblem that features could be
lost are also important tasks which are implememtethat function. The loss of an
object could naturally be effected by changing lué tobot's perspective due to its
movement. A detected object can disappear (seed-8: blue object) for a moment
because of being covered by another object (sagd-R)8: red object).

Figure 2.8: Temporary loss of a feature
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With respect to that problem a lost feature willkegpt “alive” for a short time in order
to keep the possibility to redetect it.

In the first call of the functions no tracked fea are available. Because of that fact all
detected features are written into a new featurddet contains the tracked features. All
copied features get the certainty-level of 1.

In the following calls of the function each detetteature is compared with each
tracked feature. If the colour is equal and theitmrs similar the detected feature is
considered as recognized. Within the list of tracfeatures the position of this feature is
updated and its certainty-level is incremented.

New detected features are added to the list okéihéeatures and get a certainty-level of
1.

Old features that are lost for one moment loosecaentinty-level. This is done step-by-
step until the level attenuated to 0. Then theuteais marked with an illegal position
value that shows that it is absolutely lost anddoever be recognized.

The tracked features are returned by the functiamlist of features.

Preparation of the data for the localization aldpon

In order to calculate the positions of the objeatsund the robot the localization
algorithm needs tracked features from a sequencapbired pictures. This sequence is
generated through collecting the data of a limitethber of pictures all over the way the
robot moves through the scene (see Figure 2.9nglets).

Figure 2.9: Collecting data
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The collected data is arranged as follows:
Picture Featurel Feature2 Feature3 Feature n
1 colourl, ®1 colour2, ®2 colour3, ®3 colour n, ®n
2 colourl, ®1 colour2, 2 colour3, ®3 colour n, ®n
3 colourl, ®1 colour2, ®2 colour3, ®3 colour n, ®n
m colourl, ®1 colour2, 2 colour3, ®3 colour n, ®n

Figure 2.10: Collected data

2.1.7 Localization Algorithm

2.1.7.1 Problem description

The problem we have to solve is as follows: ourotomoves in an unknown
environment and has to determipesitions of obstacleseen by the feature tracking
and theposition of the camerdrobot itself. Indeed, the concept of ego-motiorihis
“computation of camera motion from a sequence @ges” [2]. This sequence is built
with pictures taken during the movement of the todred will be used to deduce the
positions of both features and camera.

Y,

7 ]
<7

? h ¥

9 2 9 7 X

Figure 2.11: Schematic view of a short move in@bdtacles environment

The obstacles are supposed immobile, each one tirergfore 2 unknowns (abscissa
and ordinate) in the problem. The camera move amdhave to be permanently able to
estimate its position/orientation, i.e. we mustaide to calculate its trajectory (dashed
line).
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To find a solution we have to use the available sueaments. These are the angles
under which the features are seen and come astmitfhe feature tracking. Figure 2.12
shows those measurements in the case where theacdatects 2 features.

Note that sensors on the robot's wheels might e &bgive a piece of information
about the position of the camera. These data nawgever be carefully processed: their
values depends strongly on the environment (typeirzeiination of the floor...etc).

Figure 2.12: Data measured by the feature tracking

2.1.7.2 Problem modelling

The coordinates of the camera are stored in a &usional vector: (X_Cam, Y_Cam,
0_Cam). Those are the abscissa, ordinate and amglte torigin, which is taken at the
start point of the camera. These 3 componentsogedtter called “pose” of the camera.
Each Feature is localized by its abscissa and ateti(X_Feat, Y _Feat) in the same
coordinate system.

yll

Y Feat | ______________

Y Cam |--———--- .

=

Start pownt

Figure 2.13: Schematic representation of all pataredor a given feature at a certain
position
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For the k-th feature, at the j-th position (actydlie position corresponding to the j-th
picture saved in the sequence of the feature mmggtkwe have the following relation:

®j,k = atan2(Y_Feat[k]-Y_Cam([j], X_Feat[k]-X_Cam[j})6_Cam[j] (2.1)

With respectively N and M (valid) features and prets, our system reaches the size of
M*N equations (k=1..N and j=1..M).

The unknown parameters are X Feat, Y_Feat for Nufea and X_Cam, Y_Cam,
6_Cam for M pictures. We store all unknowns in aunignown vector:

p=( X_Feat[1:N], Y_Feat[1:N], X_Cam[1:M], Y_Cam[1]vb_Cam][1:M]) (2.2)

As the unknown vector’s size 2N+3M, we will get a unique solution only if

2N+3M <MN  ie. M2 with N2 4 (2.3)

Note that the condition N >4 limits our algorithm to environment containing 4 features
or more

2.1.7.3 Solution of the equation system

We are now facing the following mathematical profvle
f(p) =@ (3.1)

where fis a nonlinear function from®&"=" to RN,

Solving such a problem with an analytical methodhéser easy, considering that the
minimal number of equations is reached for N=4 gnhimplies M=8, see (2.1)), and is
equal to 4x8 =32. Moreover, the measured values dfare subject to errors and
uncertainties, which exclude an exact solution. Tiethod to use is therefore an
optimization method which can solw®nlinear multidimensional problems. Methods
based oneast squares approximationseem to be well adapted to such a problem: even
with over-determined systems (happens when MN>2Nt3Mese methods will try to
find the solution which best fits the data.

However, such methods need a start point for thHenamn vector p, otherwise the
algorithm could get stuck at a local minimum, feonh the real solution. This is where
we use the data from the wheels sensors, givingirgjavalues for X_Cam[1:M],
Y_Cam[1:M] and6_Cam[1:M]. Starting points for X_Feat[1:N] and Y &fd.:N] can
then be found from these values a@n¢see simulation).
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2.1.7.4 Simulation with Matlab

In order to get acquainted with the resolution leé problem and the behavior of the
algorithm in this particular case, we first progragd a simulation with Matlab. We

simulated features and several successive positbbnthe camera. The trajectory,

number/positions of features and number of camemsep were completely

customizable. To simulate the uncertainties/pedtiobs of the real system, we added
white noise to all components of the pose of theeara.

In Matlab, a function that performs the least sqaapproximation like we want it to is
the Isgnonlin function. We let this function run with differentorfigurations, and
numerous times with the same configuration to esnthe influence of the white noise
(=perturbations). For each simulation, the regkettary differs from the programmed
one because of white noise. We calculate the angler which feature is seen from the
position of the feature and the (real) pose ofcdmmera. We then ruisgnonlin with our
nonlinear equation system (3.1) as input. Findalg, simulation plots (with animations)
the trajectory of the robot, returns the real posibf the features, the first evaluation of
these positions (see below) and the positions kfést squares optimization.

4 o

0 D D xxxxxxxxxxxx D’ |
o @

2

4 o

N
I I - I T T I )

X Center of the robot

L1 Feature

* Orientation of the robot (direction of the frorarp
A Robot in its first and last position

Figure 2.14Simulation with a “complex” trajectory (a); Simulan with a straight line trajectory (b)

The position of each feature is first evaluatednfr® poses of the camera (these poses
are deduced from the wheel sensors in real cake.fifst evaluation is critical and can
lead to aberrations if the algorithm gets stuckaabcal minimum. In the previous
examples, the results (particularly the positiorihaf red-circled feature of Figure 2.14)
wereworse in the straight line caseno matter which points of the trajectory were used
for the evaluation. Least squares approximatiothes able to calculate new values of
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the position by considering the whole trajectorinaF values present (in almost all
cases) an improvement in comparison to the firatuation.

How the features positions are first evaluated

Pose B

Pose A

Figure 2.15: First evaluation of the position

To evaluate the position of the feature from 2 po&end B of the trajectory, we apply
the formula:

Y Feat-Y_Cam_A
X _ Feat—- X _ Cam_A
Y Feat-Y _ Cam_B
X Feat—-X _Cam_B

tan@A + gA) =

tan(@ + ¢B) =

We can then deduce the expression of X_Feat an@a&f iff function of the other
parameters.

How to select a good first-position-evaluation éach feature

Figure 2.16: Bad configuration for the first evdlaa of the position of a feature
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Figure 2.16 shows bad conditions to evaluate tsitipa of the feature: a slight error on
the orientation of the camera or due to the feahaeking can have a huge influence on
the resulting position of the feature.

In the 29 case (Figure 2.17), the conditions are much bethes(;) ~ 90°

Figure 2.17: Better configuration for the first &wation

If we use the previous denominations (with poses 4 B) the expression afis the
following:
a=(B+¢B)- (6A+¢A)

With a straight line trajectory, the optimal caimah (absé) ~ 90°) can hardly be
reached, particularly when a feature is situatedhenaxis of this line (see Figure 2.14
(b)), this is why it is strongly recommended to fleé algorithm run after a complex
trajectory. Once the first evaluation of each feafposition can be “correctly” evaluated
(the deduced coordinates must have the same sigheaseal coordinates and their
absolute value must not exceed the one of thecoeatlinate by more than 200%), then
the performance of the least squares algorithmbeajudged satisfying (error < 15%).
With a more complex trajectory, we can get closethe criteria absf) ~ 90° and the
error can then easily falls under 10%.

2.1.7.5 Implementation in C

Global structure of the localization algorithm

In our simulation, it was easy to get data to waith: we just simulated the outputs of
feature tracking and wheel sensors in an adaptedato In the real case, we had to
integrate the localization algorithm with other quonents of our system. Three steps of
the algorithm are important to understand its dldbactioning: filter feature tracking
data, first estimation of features positions (asdigein the simulation) and least squares
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approximation. Figure 2.18 shows these three steps the inputs/outputs of the
localization algorithm.

lFeature tracking] [ Wheel sensors

Angles i+ colors ) under

Fobot poses calculafed
which feafures are seen

by robofposifionf)

hJ ¢

First evaluation of
features positions

Evaluated coordinates
of valid features

Least squares approximation: dlevmar bc dif()

Optimised coordinates of the features
+ new poses of the camera

Figure 2.18: Global structure of the localizatiogoaithm

The function performing the least squares approtonavas chosen in a library called
levmar [3]. To compile the code, the BSD-licenpedkage LAPACK is required, as
well as BLAS (Basic Linear Algebra Subprograms) aegentually ATLAS
(Automatically Tuned Linear Algebra Software). Wadesteddlevmar_bc_dif() instead
of other functions because its format correspondwhat we are trying to solve (like
Isgnonlin in Matlab) and it lets the possibility to set lawend upper bounds to the
solution, preventing the algorithm from convergilogabsurd values in case of wrong
estimation before the least squares approximation.

Filter data from feature tracking

Although our feature tracking already selects thatdres which are more likely to
correspond to real obstacles, the localizationralym cannot work with “invalid” data.
Indeed, even during a short run, all features atealways visible, feature tracking then
returns a corresponding alternative value (7779%, 8ee 2.1.6 Camera Data Analysis).
This is why we first filter the returned valuesrirdeature tracking. Figure 2.19 shows
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how we proceed: we first eliminate features which o often absent (grey cells,
features k-1 and k+1) and then, given the remaif@agures, we keep the pictures (=
array’s lines) containing only valid values (norfdilite cells). On Figure 2.19, pictures
1 and 2 have been deleted (strike) because feltwas not yet identified (bold) by
feature tracking, in the same way picture M hasnbeeleted because of the
disappearance of feature 2. At the end of filterimg send all valid values (normal
cells), as a new array (corresponding to the medsualues ofd), to the least squares
function.

Feature | Feature Feature | Feature | Feature
1 2 k-1 k k+1
Picture 1 11 S oo Qog Qoo
Picture 2 i3 1 i3 2 Fi2 % 1 QQQ Qoo
D3k oo
Picture j-1 Di-1,1 Dj-1,2 Di-lLk1 | $-Lk Qa9
Picture j &1 &2 i k-1 ik oo
Picture j+1 i+l 1 | dyt+l2 777 i+l k Qa9
Picture B-1 | $LI-1,1 | PM-1,2 777 -1k Qa9
Picture A xR rarr T axf% 8 I

Figure 2.19: Filtering applied to an array returibgdeature tracking

Nevertheless, deleting invalid features resultarbftrary choices: how many times must
a feature be seeable (resp. absent) to consider at valid (resp. invalid) feature? By
eliminating too many features, the result couldim®mplete (real obstacles missing), or
the number of seen features could be too low (rhast 3M/(M-2) according to (2.1))
and prevent least squares function from working.tlm contrary, by not eliminating
enough features, the number of pictures can btegmust be > 2N/(N-3)).

We created a parameter called MISSING_FEATURES_ CODERI as a tolerance limit
for each feature, before being regarded as anithfedture. When the number of invalid
pictures for a feature becomes greater than MISSFREATURES COUNTER, this
feature is deleted from the array. The right valt®ISSING_FEATURES_COUNTER
depends of course on the sensitivity of the feanaigking and on the number of pictures
M returned. In our experiment, we tested differentvalues of
MISSING_FEATURES_COUNTER, M and feature trackingssvity.
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Least squares approximation

dlevmar_bc_dif() uses theesvenberg-Marquardt method to minimize the sum
of squares of nonlinear functions. Our problenmhesfollowing (see (3.1), (2.1) and

(2.2)): f(p)=

with p=( X _Feat[1:N], Y_Feat[1:N], X Cam[1:M], “Cam[1:M],
0_Cam[1:W)

atan2(Y_Feat[k]-Y_Cam([j], X_Feat[k]-X_Carf)[} 6_Cam[j]
atan2(p[N+k] - p[2N+M+i], p[K] - p[2N+j]) p[2N+2M+i]

®j .k

fix(p)

Note that after the filter we get new values from M and N (smaller than those in Figure
2.19.

In our case, we call dlevmar_bc_dif() with the daling parameters (see appendix E for
prototype):

dlevmar_bc_dif(fp,® , M, N, Ib, ub, Maxlter, opts, info, NULL, NULL, NLL);

The given p contains the first evaluation of alkkmowns.

Ib is the lower bound for vector p

ub is the upper bound for vector p

MaxIter = maximal number of iterations

opts contains the minimum options for the approxiomeof the Jacobian of f

Note: Ib and ub can be define in relationship il first approximation of p

After the function has run, p contains the cal@datolution.

2.2 Evaluation of the entire system

2.2.1 Laboratory Setup

In order to test the algorithm in the real world, éxperiment environment was set up.
This environment has to offer optimal conditions ander to observe the system
behavior. Indeed, before testing the system ineexdr conditions, it has to prove its
efficiency in a favorable environment. Our expemtenvironment is shown on Figure
2.20. Boxes (a) are used as walls/limits and ptdtex scene from external influences
like light sources or moving objects. The greenghdr red objects (b) are the obstacles
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(=features) that the robot will have to localizbe$e features are placed on green points.
These green points (c), placed every 20cm on t,flare used as marks to estimates
the coordinates of objects. The algorithm depeneavity on the scene lightning,
therefore light sources (d) were set up at theessecorners. An experiment consists of
10 up to 13 testruns. In a testrun, the robot m@rea predefined path under constant
parameters. The parameters are the changes faoreotheriments to test the algorithm’s
accuracy, robustness and find hints to optimizesyfsdem robustness and the stability of
algorithm.

(d)

Figure 2.20: The experimental laboratory

2.2.2 Investigation 1 (robot)

Description

The first investigation consists in observing tlehdwior of the algorithm by different
robots. There are two robots: a blue one and aoned The two robots have to move
forward while tracking the features and estimatgrtpositions. The first and the sixth
experiments consist of 5 Features, the ninth aadethth of 6 Features.
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Experiment Parameter (robot)
1 Blue
6 Red
9 Blue
10 Red

Figure 2.21: Configurations of investigation 1

Results and Interpretation

The following data is an extraction from the whte#st evaluation. The detailed results
of investigation 1 are documented in an excel stiestis archived on the attached CD
(see folder: Investigations)

Experiment | Parameter(robot) | average error | average error | Number of the
X (abs. value) |y (abs.value) |none tracked

1 Blue 0.05 0.06 0
6 Red 0.10 0.05 1
9 Blue 0.10 0.06 0
10 Red 0.03 0.05 2

Figure 2.22: Results of investigation 1

This data show significant deviation by the x estion. This is not because of the

robot, but the reason can be, that the numberaitifes has been augmented. In the
analysis of the result it was also observed thatréld robot has difficulty to track green,

blue and red features. This lower sensitivity & thd robot could be explained by the

camera quality. Although both robots are equippédith the same camera model, two

different copies can present slight differences;damera should therefore be calibrated
for each robot. An amelioration of the red robctules can be achieved with a specific

calibration of sensitivity.

2.2.3 Investigation 2 (localization algorithm)

Description

The localization algorithm has two essential patansewhich could influence the

quality of the localization results. The first paeter is the number of pictures that are
used by the localization algorithm to do its cadtidns (picture means in this context:
features extracted from the pictures and the medswobot position). The second
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parameter is the accepted maximum value of picttin@s could not be used for
calculation in terms of invalid or lost features.
In investigation 2 two different parameter setugestasted:

e 12 pictures and thereof max. 3 invalid pictures
* 16 pictures and thereof max. 4 invalid pictures

In the first setup min. 8 pictures and in the seceatup min. 12 pictures are used to
calculate the feature’s and camera’s position.

The investigation includes testruns with two difiet robots, a red one and a blue one.
This should avoid interpreting influences that afiected by differences of the robots.
The following table shows the different configuosis of the investigation:

Configuration Robot Parameter -Setup Number of testruns
1 Red 12/3 10
2 Blue 12/3 10
3 Red 16/ 4 10
4 Blue 16/4 10

Figure 2.23: Configurations of investigation 2

Results and Interpretation

The following data is an extraction from the whteést evaluation. The detailed results
of investigation 2 are documented in an excel stiestis archived on the attached CD
(see folder: Investigations).

Configuration | Parameter- | averageerror x | average error y | Number of
Setup (abs. value) (abs. value) failed testruns
[m] [m]
1 12/3 0.05 0.06 2
2 12/3 0.10 0.05 5
3 16 /4 0.13 0.05 0
4 16/4 0.09 0.06 1

Figure 2.24: Results of investigation 2

Data analysis show that an increasing of the nunobguictures that are used by the
localization algorithm to calculate the featureisdathe camera’s position does not
influence the localization results. The variety tbe localization results is neither
identifiable nor significant.
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However, the data shows a significant positive ugfice on the number of failed
testruns. This can be considered as an opporttmigptimize the system in terms of
robustness. But note that an increasing of the murob pictures used to calculate the
localization has a negative impact on the requoadputing power.

2.2.4 Investigation 3 (featuretracking)

Description

The featuredetection algorithm has several paraseteich could influence the quality
of the localization results. The parameters camidesl to adjust the featuredetection in
terms of its sensitivity. The parameters that aged within this investigation are the
sensitivity for red, green and blue objects.

« LIMIT_RED
* LIMIT_GREEN
 LIMIT_BLUE

In the first setup the featuredetection is adjusted sensitive; in the second setup it is
adjusted high sensitive.

The investigation includes testruns with the red #re blue robot. This should avoid
interpreting influences that are effected by ddferes of the robots. In terms of
manufacture tolerances of the cameras, the blue th@dred robot need different
parameter-values for a similar practical behavadithe featuredetection.

The following table shows the different configuosi$ of the investigation:

Configuration | Robot Parameter-Setup Testruns
1 Blue LIMIT_RED =180 10
LIMIT_GREEN = 115
LIMIT_BLUE =90
(low sensitive)
2 Red LIMIT_RED =175 10
LIMIT_GREEN = 110
LIMIT_BLUE = 87
(low sensitive)
3 Blue LIMIT_RED =175 10
LIMIT_GREEN = 110
LIMIT_BLUE = 87
(high sensitive)
4 Red LIMIT_RED =144 10
LIMIT_GREEN =108
LIMIT_BLUE = 88
(high sensitive)

Figure 2.25: Configurations of investigation 3
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Results and Interpretation

The following data is an extraction from the whteést evaluation. The detailed results
of investigation 3 are documented in an excel stiestis archived on the attached CD
(see folder: Investigations).

Configuration | Parameter- average error x | average error y | Number of
Setup (abs. value) (abs. value) failed testruns
[m] [m]
1 low sensitive (blue 0.12 0.09 1
robot)
2 low sensitive 0.03 0.05 1
(red robot)
3 high sensitive 0.14 0.07 0
(blue robot)
4 high sensitive (red 0.11 0.06 0
robot)

Figure 2.26: Results of investigation 3

Data analysis shows that an increasing of the fedé&tection’s sensitivity does not
influence the localization results. The variety tbe localization results is neither
identifiable nor significant.

However, the data shows interesting informatiothim testruns 1&9 of configuration 3

and in testrun 9 of configuration 4. One exampkehiswed as follows:

x Y
x ¥ first aprox. |first aprox.
Testrun  |calc. [m]) calc. [m] i) miy] feature Posx [m] Posy [m]

1 0.179931 -0.339105 0171009 -0.34189%6|g1 0.20 -0.30

0371625 0301756 014314 04157 [k 0.A0 0a

0.77461| -0.258724 0.988464| -0.405153|b2 1.00 -0.4
0.555982 -0.3530741 0.597538 -0.44741|r1 0.60 -0.40
0.40 0.40
0.179931 -0,339105 0.171009 -0.2418%0 | g1 0.20 -0.30

Figure 2.27: Results (detail) of investigation 3

The table shows a feature, detected and trackegbsirun 1 of configuration 3 that does
actually not exist. Features that are used by dkalization algorithm, although they
does not exist, will disturb the calculation of thesition of other features and finally
also the calculation of the camera position.

The estimated position of feature “b2” may “sufférxdm the additional detected feature
that does not exist. All other testruns of this faguration show a sufficient estimation
of the position of feature “b2”.
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The localization results cannot be improved by easing the featuredetection’s
sensitivity. In contrary, this measure effects tleecting and tracking of non-existing
features in certain cases. The assumption thae thes-existing features disturb the
localization results could be verified for seveestruns.

2.2.5 Investigation 4 (trajectory)

Our 4" investigation aimed to compare the results obthinea same environment with
two different trajectories: a straight line (T1)daa little more complex trajectory (T2):

B |

Figure 2.2: Configurations of investigation 4

Our environment consisted of 6 features including on the axis of the “straight line
trajectory” (F4). This was thought to show what s&v with the simulation: the final
localization of features should be better with WR&inly due to the first estimation of
F4’s position.

We then compared errors of feature localizationaféotal of 47 testruns (28 for T1 and
19 for T2), with different values of feature traggisensitivity.

The results do not show any improvement in theufealocalization, we even notice a
precision degradation for a certain sensitivity feature tracking. By analyzing all

measurements, we saw that too many features weoednized” (imaginary features
were “seen”) although this didn’t happen duringwith the same sensitivity. Of course,
those features disturb the global results of lsgsiares approximation: the algorithm
tries to optimize a set of parameters from abewahtes.

This experiment shows the critical importance oé tbet of parameters feature tracking
sensitivity/filtering of feature tracking data. brder to correctly evaluate the behavior of our
system in such a situation, we should thereforémipt these parameters first, and then retry
this experiment.
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3 Summary

3.1 Critigue and conclusion of the essential results

The project’s objective was about to prove the fizat functionality of an algorithm
using features from a spatial environment to oatnand to provide the possibility for
egomotion. Base of the project is a small mobilbotothat is equipped with an
omnidirectional driving system, a camera and anssiveé sphere, theoretically able to
orientate in a spatial environment. In order to tominthe mobile robot using a
localization algorithm, software was developed witinis project. This software runs on
an external PC and communicates with the robotqgstatvia WLAN.

The detection and tracking of distinctive objeatsuad the robot could be implemented
and was evaluated under optimized laboratory cuomdit

A rough measurement of the robot’s movement coeldntplemented by capturing the
incremental encoders of the omnidirectional wheElgs data is strongly influenced by
the environment (type and inclination of the floahd therefore could only be
considered as a support for the calculation ofdbalization algorithm.

A localization algorithm was implemented and eveddaunder optimized laboratory

conditions. It uses the angles under which digtrecteatures are “seen” as well as the
rough measurement results of the robot's movenemstimate the feature’s and the
robot’s (the camera’s) position within the spagial/ironment.

The position estimation of the localization alglnit has a limited accuracy, but in the
context of the laboratory setup the results carcdoesidered as satisfying. In case of
detecting and tracking too few features from theatigp environment, failure
measurements may occur.

Investigations on the system within the laborategtup provide information about
opportunities to improve the localization algoritesmaccuracy as well as the probability
for occurrences of failure measurements. Possilpgmaations are described as
follows.
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Camera resolution limitations

In terms of saving costs and required computingeyaiive resolution of the camera is

limited. That limitation effects an error that canibe considered as insignificant.

The resolution of possible angles between 0° ari} B6approximately 1.4°. Hence an

error of 1.4° has to be expected in the worst case.

The impact on the localization results dependsherdistance between the robot and the
detected object. A calculation with the law of oes results that an object that is
positioned 1 m afar from the robot could be congdeas approximately 2.5 cm away

from the actual “real” position due to the camera'solution limits.

Figure 3.1: Camera resolution error

Featuretracking

Imprecise localization results can be effected byprecise featuredetection and
featuretracking results.

Errors could for example result due to a miscalotaof the detected object’s center:
Not every object is well illuminated from every gdde direction the robot may “see” it.
This can effect that only half of the object isat#é&d and hence the object’'s center may
be “shifted” to one direction (see Figure 3.2: Fealis caused by partial illumination).
The impact on the localization results dependsherdistance between the robot and the
detected object. Near objects that have tempolerydescribed properties will effect a
bigger error than objects that are far away.

e light source

@ B

------- right angle

\\\
& ------- wrong angle

Figure 3.2: Problems caused by patrtial illumination
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Errors can also occur because of feature lossesclBissification of an assumed object
as valid depends on how big it appears in the mctdence an object that is too far
away could not be detected and will be lost or néseen”. In addition it is possible that

the featuretracking gets confuse by the occurr@ideo many features, because new
features could be considered as already seen.othézation results become imprecise
if the algorithm gets too less or wrong informatedsout the spatial environment around
the robot.

In order to optimize the featuredetection and #eturetracking in terms of robustness
several measures are possible. Using filters ghten the picture or increase its contrast
could effect a better initial situation for the ilemented featuredetection. These filters
can also be implemented adaptive to changes arthieonment.

An improvement is also possible through changinghef segmentation algorithm (see
Chapter 2.1.6 Camera Data Analysis). Instead ofgusie whole picture to calculate the
threshold-status of every pixel it is also possiblealculate the threshold-status in the
context of a 3x3-Array that is shifted through titeole picture (Figure 3.3:). This could
provide an improvement of the algorithm in terms psbblems effected by partial
illumination.

Figure 3.3: Partial segmentation

Instead of using the colour intensity, other praipsrof the spatial environment could be
used as well. Distinctive objects can also be deteby their edges or the type of their
shape. This could also improve the interpretatibgorghm in terms of problems
effected by partial illumination or the independefi@m illumination itself.

The optimization opportunities of the featuredetettand the featuretracking are

manifold. Further investigation has to be acconmglds to predict which optimization
opportunities might have the most positive impacthe system’s robustness.

Least squares approximation

The localization algorithm, as it is now implemahtds not devoid of intrinsic
imperfections. Before implementing it on a mastemtooller, we would have to reduce
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its needs in calculation power. Indeed, during experiments, we measured the time
needed to process data with two different platforms
 PC from CCRL: CPU = AMD Phenom 9850 (Quad-Core(GHz), 4GB RAM

* Netbook: CPU = Intel Atom N270 (Single-Core, 1.6GHZGB RAM

With the first configuration, the average proceggime was around 400ms and with the
second one, around 1.8s. By extrapolating this, de¢acan easily realize that it cannot
be adapted to an embedded microcontroller.

A combination of solutions might make it possitldeong those we already listed:
» linearization of atan2 in our nonlinear equatiosteyn (if estimations are good,
the algorithm always works around a same point)
» change parameters of dlevmar_bc_dif() (reducingati@ns limit, enhancing
tolerance on result...)

Filtering of feature tracking data

In real case, the biggest problem we had was tgreze features; we therefore tried to
optimize parameters related to the filtering oftfiea tracking data. We pointed out the
crucial importance to harmonize the filtering paedens to the feature tracking
sensitivity: when the sensitivity is too high ame ffiiltering not strict enough, imaginary
features can be “seen”, which affects @sults (localization of features/camera); and
when the sensitivity is too low and the filteringptstrict, real feature can be “unseen”
which can lead to collisions with obstacles.
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Appendix A: Flow Diagram of function getCamData()

Set picture format

v

Set camera offset

v

Send request for data
of one picture

Receive data

Data of one picture
is received

yes

v

Return received
data
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Appendix B: Flow Diagram of function DataToPic()

each

raw camera data

pixel

4

Extract top- and bottom-
byte of pixel x

v

Combine the top- and
bottom-byte and calculate
the value of pixel x

v

Lookup for the correct x-
and y-Position (ring) of
pixel x

v

Save pixel x in picture

Return the picture
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Appendix C: Flow Diagram of function featuredetecton()

Picture (all colours)

Extraction of the colour information
Building of a red- a greer- and a blue picture

Pictures (red green blue]

Segmentation
Calculation of thresholc-arrays for each colour

Threshold-Arrays (red green blue]

Noisefilter (optional)
Elimination of isolated threshold-positive pixels
(noise;

Filtered Thresholc-Arrays

vy

Analysis of the rows (x|

A

Analysis of the columns (y)

Number of thresholc-positive
pixels (y;
> MIN_WIDTH_Y

Number of thresholc-positive
pixels (x,
> MIN_WIDTH_X

yes

v

Feature detected!
Calculate the position of the object’s center

A

Write featureinformation to featurelist
(colour position]




Appendix D: Flow Diagram of function featuretracking()

nc

v

First call of functior

Initialization
yes—p Write all detected features tc
list of tracked features

Compare each detected feature witr
each tracked feature

yes

Feature recognizec (same
colour similar position),

Update current position of recognized
feature increment its certainty

A

Analyse whether new features
appeared or old features are losi

New features availiable

yes

Write new feature to the list of
tracked features

Old features lost

yes

Decrement certainty-level of lost
feature

Certainty-level <= C

yes

Overwrite position of lost feature
with illegal value -> feature
absolutly lost
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Appendix E: Prototype of dlevmar_bc_dif() (see [3for more details):

int dlevmar_bc_dif(
void (*func)(double *p, double *hx, int mtin, void *adata),
double *p, double *x, int m, int n, doublk*double *ub,
int itmax, double *opts, double *info, doelwork, double *covar, void *adata);
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