
ArDVS: A DVS Arduino shield

Final Report

submitted by
Michael Dirix,

Jonas Timmermann

NEUROSCIENTIFIC SYSTEM THEORY
Technische Universität München

Prof. Dr Jörg Conradt

Supervisor: Dr. Christoph Richter
Final Submission: 07.07.2015

Abstract

Arduino is a popular open-source physical computing platform based on a simple
microcontroller board, and a development environment for writing software for the
Arduino boards. Given the low computational power of a typical Arduino micro-
controller, processing live image data of even a low-resolution camera is, often not
realizable. Dynamic Vision Sensors (DVS) naturally reduce the data stream by or-
ders of magnitude at a chip level. Instead of sending whole frames of pixel data
at fixed time intervals the DVS chip emits single events that represent pixel-local
changes of light intensity.
The topic of this practical course was to develop a DVS Arduino shield and basic
libraries to use and control the DVS data stream with Arduino. This final report de-
scribes the development steps, specification, design and manufacturing of two hard-
ware prototypes. Additionally, the specification of the software, software design,
implementation and finally the documentation of an ArDVS example project. In
order to test and debug the DVS library during development and to offer the ArDVS
users an intuitive graphical interface, an Android application for the ArDVS shield
was developed additionally.
In summary, the Arduino shield, library, pan-tilt system and the Android appli-
cation developed in this practical course can be perfectly used as plug and play
solution to get familiar with dynamic vision sensors. However, for professional use,
the low computational power of Arduino boards limits the applicability.

2

CONTENTS 3

Contents

1 Introduction 5

2 Hardware 7

2.1 Components . 7

2.1.1 Arduino Due . 8

2.1.2 eDVS4337 . 8

2.1.3 Bluetooth module HC-06 . 9

2.1.4 Pan-tilt-system . 9

2.2 Arduino shield . 10

2.2.1 Design . 10

2.2.2 Prototype iterations . 11

3 Software 13

3.1 ArDVS library . 14

3.1.1 Definition . 14

3.1.2 Implementation . 15

3.1.3 Test . 16

3.1.4 Documentation . 17

3.1.5 Example projects . 19

3.2 Android application . 22

3.2.1 Definition . 22

3.2.2 Implementation . 24

4 Application: Event based photography 25

4.1 Motivation . 25

4.2 Components . 26

4.3 Filters . 26

4.4 Camera remote control . 26

4.5 Implementation . 27

5 Conclusion 29

List of Figures 31

4 CONTENTS

Bibliography 33

5

Chapter 1

Introduction

Arduino is an open-source physical computing platform based on a simple microcon-
troller board, and a development environment for writing software for the arduiono
boards. Lots of people prefer to realize their hardware and software projects with
Arduino, because it is inexpensive and has a simple and clear programming envi-
ronment. Given the low computational power of a typical Arduino microcontroller,
processing live image data of even a low-resolution camera is, unfortunately, close
to impossible. While workarounds in the form of dedicated preprocessing engines
do exist, a general approach to vision on Arduino is lacking.
Dynamic Vision Sensors (DVS) naturally reduce the data stream by orders of mag-
nitude at a chip level. Instead of sending whole frames of pixel data at fixed time
intervals the DVS chip emits single events that represent pixel-local changes of light
intensity. As this resembles a part of our retinal functionality, the technology is also
known as silicon retina.
The topic of this practical course was to develop a DVS Arduino shield (ArDVS)
and basic libraries to use and control the DVS data stream with Arduino. This fi-
nal report describes the development steps, specification, design and manufacturing
of two hardware prototypes. Additionally the specification of the software, soft-
ware design, implementation and finally the documentation of an ArDVS example
project. In order to test and debug the DVS library during development and to
offer the ArDVS users an intuitive graphical interface, an Android application for
the ArDVS was developed additionally.

6 CHAPTER 1. INTRODUCTION

7

Chapter 2

Hardware

The main goal of the hardware was to create a universally useful board for the
Arduino community. Therefore, the focus was on flexibility, ensuring compatibility
to different Arduino boards, offering various mounting options for the eDVS board,
providing different interfacing channels and extension possibilities.

2.1 Components

In this section the main components of the hardware solution are discussed. Figure
2.1 shows the fully assembled ArDVS shield.

Figure 2.1: ArDVS shield

8 CHAPTER 2. HARDWARE

2.1.1 Arduino Due

The Arduino Due board, shown in figure 2.2, was chosen for its superior perfor-
mance compared to the other Arduino controllers. All the other boards are based
on 8-bit Atmel AVR ATmega microcontrollers which are clocked at up to 16 MHz
and feature very limited RAM and flash memory. The Arduino Due in contrast
features a 32-bit ARM Cortex M3 from AVR with a clock rate of 84 MHz and with
96 kB of SRAM 12 times as much main memory compared to the second largest
Arduino.
While the eDVS reliefs the host controller from much of the processing, a microcon-
troller with a decent CPU is still required to handle and store the incoming event
stream.
Another benefit of the Cortex M3 is the great selection of peripherals. Especially,
a second UART port for communicating with the eDVS and the Bluetooth module
at the same time is essential and most other Arduino boards only offer one port.

Figure 2.2: Arduino Due[ard15]

2.1.2 eDVS4337

The eDVS4337 board by iniLabs, depicted in figure 2.3, is used as a vision system.
The board features iniLabs’ DVS128 sensor chip as well as a powerful LPC4337 ARM
Cortex based microcontroller by NXP. The microcontroller’s M0 coprocessor handles
the communication with the sensor while the 204 MHz clocked M4 main core takes
care of the data processing and interfacing to other systems. The communication
with the Arduino microcontroller is facilitated through a UART connection with a
protocol detailed in the software section.
The eDVS4337 board offers many additional features like a battery charging circuit,
an inertial measurement unit, a microSD card slot and motor drivers. With this
rich configuration it can act as a standalone robot controller. The ArDVS shield

2.1. COMPONENTS 9

does not use any of these features, so that the shield is also compatible to more
economical eDVS boards in the future. As the board is connected to circuit board
of the Arduino shield by a 6 pin Micro-MaTch connector it is easy to switch the
eDVS board to newer revisions or other DVS modules that offer the same connector.

Figure 2.3: eDVS4337[ini15]

2.1.3 Bluetooth module HC-06

For the wireless communication from the ArDVS to a host system a Bluetooth
module port was included in the shield design. The Bluetooth link basically serves
as a wireless bridge for a serial connection. The HC-06 module by Guangzhou HC
Information Technology, pictured in figure 2.4, was chosen, mainly because of the
low price point of 2USD. The device operates in slave mode and achieves a baud
rate of 230,000 bit/s, which is not enough for high throughput tasks but sufficient
for many monitoring and configuration applications.

2.1.4 Pan-tilt-system

For a flexible mounting solution of the eDVS board on the ArDVS shield the mini
pan-tilt kit available from Adafruit was chosen. As seen in figure 2.5, the system
consists of two small servos and some plastic parts that allow the sensor chip to
point in any direction within about 180◦ for panning and tilting. The whole system
is only about 40mm x 40mm x 70mm in size and 37g in weight. The servos operate
from 3 to 6V and are controlled with the standard servo protocol. The positioning
flexibility and the possibility of readjusting during operation enable many interesting
use-cases, which are impossible with a static construction.

10 CHAPTER 2. HARDWARE

Figure 2.4: HC-06[Pas15]

2.2 Arduino shield

The foundation for interconnecting all the previously mentioned components is a
self designed circuit board.

2.2.1 Design

This so-called shield follows the Arduino Uno R3 layout for the core functionality
of interfacing the eDVS board. Yet, for the Bluetooth communication feature an
additional UART port is required, which is only offered by Arduino Due, Mega 2560
and Mega ADK. Figures 2.6 and 2.7 show the schematics and layout of the board
created with the board design software EAGLE by CadSoft.
The schematics of the board include UART connections for the Bluetooth module
and one with flow control for the eDVS. Further, there are motor control circuits
for the two servos and an infrared LED control, which is used as a remote control.
The board layout additionally features mounting holes for the pan-tilt-system base-

2.2. ARDUINO SHIELD 11

Figure 2.5: Pan-tilt-system[4tr15]

plate with a cutout underneath to fix the servo in the right position without the
need to remove the base plate. The four holes in the corners allow for the eDVS to
also be mounted flat on the shield without a pan-tilt-unit. By using only two holes
with 90◦ joints it is further possible to tilt the eDVS board to any of the sides. For
creating simple additional output circuits a prototyping grid is included next to the
eDVS port.

2.2.2 Prototype iterations

The presented board is the second iteration, which benefitted from the learnings of
the first prototype. The prototyping area as well as the remote control LED were
only added in the second generation. Further, the cutout for the servo was included
and the port for the Bluetooth chip was turned by 180◦ for the possibility of mount-
ing the module flat.
Another learning of the board’s copper milling production process was the impor-
tance of removing unused copper planes. Due to the lacking solder resist with this
production technique it was impossible to solder the components without creating
many soldering bridges. The additionally required soldering time led to damaged
pads and unreliable connections. By clearing the unconnected copper planes in the
production of the second iteration the board was much easier to solder with far
superior soldering connections.

12 CHAPTER 2. HARDWARE

Figure 2.6: ArDVS board layout

Figure 2.7: ArDVS board schematics

13

Chapter 3

Software

The software part of this practical course was initially limited to a basic library to
use and control the DVS data stream with Arduino. The eDVS4337 board, offers a
lot of more functionalities than the raw data stream. Via serial port it is possible
to set and get parameters for motor driver, real time clock, baud rates and much
more. This features can be very useful for ArDVS projects which may be realized
by the Arduino community. Because of that, we decided to provide this additional
functionalities to the ArDVS users. The whole ArDVS library is designed according
to the Arduino Style Guide for writing libraries. This style guide is for Arduino
library APIs developers. Some of these guidelines run counter to professional pro-
gramming practice, but made it possible for so many beginners to get started with
Arduino easily. The steps of developing the ArDVS library, discussed in the follow-
ing sections, are definition, implementation, test and documentation. Finally, there
are three example projects described, which are developed on top of the library.
Offering example code to the Arduino user is state of the art for Arduino libraries.
In order to do the development more efficiently, it is at some point absolutely neces-
sary to visualize the data stream in some way. Of course the Arduino board has no
possibility to visualize the stream directly. Currently, there are three ways mostly
used to view the events coming from the eDVS. All of them require to connect a USB
cable from the Arduino Board to the Computer. The first way is to show the raw
output via an terminal emulator, described in the eDVS user guide of iniLabs. The
second way is to use some Matlab scripts to visualize the event stream graphically.
The third way is to use the officially supported software to view and process events
coming via UART, called the jAER framework. All of them need multiple steps to
set up and knowledge how to use terminal emulator, Matlab or the jAER frame-
work. At this point, it might happen, that the Arduino user loses their motivation
because of the big time investment in setting up the eDVS project. For this reason
we decided to design and implement an Android application, which can connect to
the ArDVS automatically and does not require any setting up to view the eDVS
events graphically.
The ArDVS library, developed in this practical course, only works like a plug and

14 CHAPTER 3. SOFTWARE

play product, if the eDVS comes with customized firmware. At default, the baud
rate of the eDVS is set to 4 million baud. This speed is too fast for most of the
Arduino boards currently in the market. Because of that, the last chapter describes
modifications on the eDVS board operating system and how to apply the changes
to the eDVS board.

3.1 ArDVS library

This section is about the ArDVS library API of the ArDVS. In the subsection Defi-
nition, the requirements for the ArDVS library API are specified, mostly according
to the Arduino style guide. The following chapters are about implementation, test
and documentation of the library.

3.1.1 Definition

The ArDVS API consists of three different APIs, see illustration 3.1. Each API is
responsible to control different components of the ArDVS. The components are the
eDVS4337 API, Bluetooth API and the pan-tilt API. The ArDVS library can be
easily used by an Arduino project by including the ArDVS.h file.

Figure 3.1: Contents of the ArDVS Library

Usability

The ArDVS library is designed to have easy control about the eDVS4337 module, the
bluetooth module and the pan-tilt system. The library should fulfil the requirements
from the Arduino Style Guide. It is necessary to assume that even a person can
understand the library who has never programmed before. So a clear mental model
of the concept and structure of the code is required. This is realized by avoiding

3.1. ARDVS LIBRARY 15

nested structures and by using clear naming of the functions. The usage of the
ArDVS library is planned to be simple as possible. The minimum code, which is
required to get started with the ArDVS module should only be a few lines of code.
All initialisation methods will be done in the constructor of the ArDVS library. So
creating an object of the ArDVS library class is enough to set up the library.

eDVS4337 API

The eDVS4337 board, offers a lot of functions to the user. Via serial port it is
possible to set and get parameters for motor driver, real time clock, baud rates and
much more. The ArDVS library is designed to get simple access to the provided
features of the eDVS module without entering any serial command. The ArDVS
library offers a function called writeToDvs() in order to send commands to the eDVS
module directly. But it is much more easier to use one of the provided functions
of the ArDVS library which sends the required command over serial port in the
background. And this is exactly what the Arduino Style Guide defines. In order to
write an API according to the style guide, it is necessary to organize public functions
around the data and functionality that the user wants. Very often, the command
set for the eDVS module is overly complicated for the most common uses and can
be hidden or re-organized with higher level functionality. So. for example, the
ArDVS library API avoids setting register values, because this is a too unintuitive
functionality of the eDVS module.

Bluetooth API

As mentioned in the hardware chapter, the Bluetooth module is a UART to Blue-
tooth converter. In order to set baud rates, name and other parameters of the
Bluetooth module the ArDVS library offers some abstract functions, which do not
require knowledge about the AT command set. That guarantees, that even an un-
experienced user can change the Bluetooth name and serial settings.

Pan-tilt API

The pan tilt module is built with two micro servos. One servo controls the rotation
around the vertical axis, the other servo controls the tilting. The ArDVS library
offers one function to set the angle of rotation for both dimensions.

3.1.2 Implementation

The ArDVS library API is for controlling the ArDVS according to the Arduino Style
Guide. Similar to most Arduino libraries, the ArDVS library consists of two files.
One Cpp-file and one h-file. The h-file can be included by an Arduino project to
get access to the ArDVS API. The most complex structures in the library are the
callback functions, provided by the eDVS4337 API. In figure 3.2, there is a class

16 CHAPTER 3. SOFTWARE

diagram, which illustrates the functionality of the callback function for events.
In order to read out the serial port of the eDVS module regularly, it is necessary to
call the run() function of the ArDVS library in the loop() function of the Arduino
project. Every time, when the run() function is called, the ArDVS library checks,
if bytes are available at the DVS serial buffer, as depicted in 3.3.

Figure 3.2: Class diagram section

3.1.3 Test

The maximum baud rate, which was achieved with a stable connection to the eDVS
module via the standard Arduino API over the pins RX0 TX0, was 2,625,000 baud
at the Arduino Due board. A higher baud rate results in an empty receiving buffer
at the Arduino Due board. However, if the Arduino user applies filters and other
algorithms on the event stream, this often results in an effectively slower baud rate,
because the stream can not be processed that fast. Simple filters, similar to the
DVS filter example, descrived in the next section has no influence on the effective
baud rate.
In order to test the ArDVS library during development efficiently, it is necessary
to have a fast implementation, compiling and testing cycle. In order to achieve
this, we developed an Arduino project, which was developed for testing only. Using
this project, most of the library functions can be called during runtime by serial
commands, without recompiling and flashing the whole Arduino firmware. After
implementing the callback functions for receiving the events, it was required to view
the event stream of the DVS. With a bitmap representation, for example it is easy
to see if an applied filter for the DVS events works correctly or not. Every user of
the ArDVS library will need something like a video-view of the event stream from
the DVS, in order to see if his project works correctly. Instead of learning the usage
of jAER or Matlab, the Arduino user can use an Android application developed by
us in order to view the eDVS output as a video. The Android application connects
to the eDVS board automatically and can show the eDVS stream. The Android

3.1. ARDVS LIBRARY 17

Figure 3.3: Flowchart how the UART of the DVS module is read

user does not need any knowledge how to connect the ArDVS to the PC and how to
view the events on Matlab or jAER. The maximum baud rate of the used Bluetooth
module was only 230,400 baud because of financial reasons. Testing the Arduino
project with higher baud rates up to 3 million baud is possible with the native USB
port of the Arduino Due board.

3.1.4 Documentation

Similar to other Arduino libraries, the documentation of the library is available
in HTML format. After a brief description, the user gets the download link and
installation instructions. Installing the library is described in five steps:

1. Create a folder named ArDVS in you documents/Arduino/libraries folder.

2. Copy and paste the ArDVS.h and ArDVS.cpp under the ArDVS folder you
just created.

18 CHAPTER 3. SOFTWARE

3. Launch or restart the Arduino IDE to let it detect the new library.

4. Open one of the example codes (see below) to get started with the library.

The ArDVS library can be divided into different application sections. The most
used section will be the API for setting up the ArDVS library.
The function ArDVS::setupDvs(void) must be called in the setup-body of the Ar-
duino project. This is necessary to initialize the connection to the DVS module and
the Bluetooth module.
In the Arduino project, two callback functions can be called from the ArDVS library.
The first callback function is an event callback and the second one is an callback for
incoming text messages from the DVS module. To set the event callback function,
the method ArDVS::setEventListener(event callback f) must be called. Setting up
the callback function for incoming text messages from the DVS module is similar.
The user must call the method ArDVS::setRxListener(rx callback f). More details
about setting up and using the callback function can be found in the ArDVS library
documentation.
The API for starting, stopping and parsing the event stream of the DVS is the core
feature of the ArDVS library. The DVS data stream can be started by calling the
method ArDVS::startStream(void), and stopped by calling ArDVS::stopStream(void).
According to the Arduino Style Guide for libraries, it is recommended to offer an
own function for each functionality instead of offering only one function with a few
parameters. Parsing events is very easy. The Arduino user does not need any knowl-
edge about the communication protocol of the DVS module. Instead of that he can
call the following functions:

uint8_t ArDVS:: extractXFromEvent(char* event)

uint8_t ArDVS:: extractYFromEvent(char* event)

uint8_t ArDVS:: extractPolarityFromEvent(char* event)

uint8_t ArDVS:: extractTimestampFromEvent(char* event)

More details about the usage of the functions above can be found in the documen-
tation of the library.
With these functions users can get direct access to the serial to the DVS module.

void ArDVS::print(String tx)

void ArDVS::print(int tx)

void ArDVS::print(char tx)

The user can write and flush bytes to the serial of the DVS module. In order to
change UART settings, the user can call following functions:

void ArDVS:: setUartEchoModeToNone(void)

void ArDVS:: setUartEchoModeToCmdReply(void)

void ArDVS:: setUartEchoModeToAll(void)

void ArDVS:: setBaudRateOfDvsModule(int baudrate)

3.1. ARDVS LIBRARY 19

The naming of the functions is a trade-off between self-explaining and clarity, as
required according to the Arduino API Style Guide.

The type of the timestamp of an DVS data event can be changed too. In order to do
this, the Arduino user needs deep knowledge about data types and the DVS module
itself. Because of this, the function are very well explained in the source code. In
this report, the functions are listed, but more details about the timestamp format
can be found on the support page of iniLabs. To set and get the current event type,
following functions and methods can be called:

int ArDVS:: getEventType(void)

void ArDVS:: setEventTypeTimestamp0Bit(void)

void ArDVS:: setEventTypeTimestampVariBit(void)

void ArDVS:: setEventTypeTimestamp16Bit(void)

void ArDVS:: setEventTypeTimestamp24Bit(void)

void ArDVS:: setEventTypeTimestamp32Bit(void)

The ArDVS library additionally offers function to set the value of the current times-
tamp.
Really useful for ArDVS beginners and experts are the methods for setting the LED
status. The library offers methods for turning the led off, on or keep it blinking.

The ArDVS library also offers methods for the built in Bluetooth module of the
ArDVS. Calling this methods, the user can change the name of the Bluetooth module
during discovery from a master device and set the baud rate of the UART-Bluetooth
converter.

The DVS module comes with two motor drivers. The ArDVS library offers methods
for enable and disable this motor drivers. Additionally, it is possible to set the PWM
period and duty cycle of the motor driver in microseconds.

The built in real time clock of the DVS module can also be enabled, disabled, set
and received by the functions offered by the ArDVS library.

The next chapter describes three Arduino example projects, which take advantage
of the ArDVS library. After downloading the ArDVS library, this example projects
will be included.

3.1.5 Example projects

The ArDVS library comes with three example projects: HelloDvs, AndroidDvs and
FilterDvs. The complexity of every example project increases step by step. All
example projects are described below.

20 CHAPTER 3. SOFTWARE

HelloDvs

HelloDvs is the most simple example project, which is recommended to open with
the Arduino IDE using the ArDVS module the first time. The next code snippet
demonstrates how the example project looks like.

#include <ArDVS.h>

void onEvent(char* event);

ArDVS myDvs;

void setup() {

//setup the ArDVS shield

myDvs.setupDvs ();

// register Listener to receive events from the dvs

module

myDvs.setEventListener(onEvent);

//start the event stream

myDvs.startStream ();

//myDvs.setEventTypeTimestamp16Bit ();

//setup serial to communicate with the PC terminal

emulator

Serial3.begin (230400);

}

void loop() {

myDvs.run();

}

//this function will be called , after receiving an event

from DVS

void onEvent(char* event){

//print the event to Serial in an intuitive format

Serial3.print(myDvs.extractXFromEvent(event));

Serial3.print (",");

Serial3.print(myDvs.extractYFromEvent(event));

Serial3.print (",");

Serial3.print(myDvs.extractDensityFromEvent(event));

Serial3.print (",");

3.1. ARDVS LIBRARY 21

Serial3.print(myDvs.extractTimestampFromEvent(event));

Serial3.println ("");

}

All ArDVS projects need to include the ArDVS library in order to have access to
the ArDVS class, defined in the library. In line 4 we declare our callback function,
which will be called every time when a new event is received from the DVS module.
In line 5 we create a ArDVS object, called myDvs. This object delcaration is always
necessary in an ArDVS project. Declaring an ArDVS object causes a call to the
constructor of the ArDVS class. In this constructor important default values will be
set for the ArDVS library and we have created an object to get access to all public
functions, available in the ArDVS library.
Every Arduino project has a setup() method. In this method we must call my-
Dvs.setupDvs() in order to set up the serial port to the DVS module and to the
bluetooth module.
In line 12 we set the callback function, which was previously declared at line 4. Now
the ArDVS library is able to call our function. In line 15 we activate the event
stream. That means, the eDVS will send the event data stream to the Arduino
board. In line 18 we declare the baud rate of a free serial port, which is connected
to a terminal emulator. For example Putty.
In line 22 we call the run() method of the ArDVS library. Calling this method causes
a check for waiting events in the DVS serial buffer. Because of that we need to call
the method periodically in the loop() method.
The last step is to initialize our callback function. This is the place where we can
place code in order to manipulate the events, received from the DVS. In the fol-
lowing lines, we parse the received event with the built in functions from the DVS
library and print them to the serial port of our choice in readable clear text format.
The output could look like following:

1,12,0,24

1,15,1,26

4,127,1,28

Because of the simple complexity, it is recommended to open the ArduinoDvs ex-
ample project after the HelloDvs project.

ArduinoDvs

The ArduinoDvs example consists of an Arduino project and a corresponding An-
droid application. The Arduino part is very easy. Instead of parsing and print-
ing the received events to a terminal emulator like the HelloDVS example does,
the events are forwarded to the bluetooth module via the command bluetoothSe-
rial.print(event);.
After that, the Android application is able to receive the events and to display
them. More details about the Android application are given in the next section.

22 CHAPTER 3. SOFTWARE

The ArduinoDvs project offers more features. If the event stream is disabled, it is
possible to write and read to the serial port of the DVS module with an integrated
terminal emulator in the Android application. A further feature is the possibility to
call most of the ArDVS library functions and methods from the Android app too,
during runtime. This is possible in the preference page of the Android application.
The best feature of the Android App is that is always reconnects automatically to
the ArDVS board and is able to show the DVS event data stream as live-stream as
a 128 times 128 pixel pixmap.

FilterDvs

The FilterDvs example shows a simple filter, applied to the event data stream of
the DVS. In this example project a rectangle of 40 times 40 pixels is filtered and
forwarded to the serial port.

3.2 Android application

In this practical course, we developed an Android application, which is able to
connect to the ArDVS via Bluetooth. This Android application can be used in
combination with the example project, called AndroidDvs. The main purpose of
this application is, that the android user can view the event data stream without
installing software on his computer. The next two sections describe the definition
and implementation phase of the Android application during the practical course in
short.

3.2.1 Definition

The Android app is designed to be an easy-to-use alternative to the existing solu-
tions to show the raw DVS and ArDVS data stream. The screenshots in figure 3.4
show the Android application HelloArDVSLibrary, available at the Play Store. The
source code is also available in a bitbucket git-repository.

The left screenshot shows the preference section of the HelloArDVS application. The
screenshot in the middle shows the live-view of an active DVS event data stream.
The right screenshot shows the built in terminal emulator to the ArDVS.

The Android application offers a terminal emulator for debugging and offers a pos-
sibility to send and receive data directly to the DVS module. With the Android
App, several functions of the library can be called during runtime. The most useful
feature of the Android App is the automatically reconnection to the ArDVS board
and the feature to show the ArDVS output as live-stream as a 128 times 128 pixel
pixmap. The navigation through the menu is very simple. The block diagram in

3.2. ANDROID APPLICATION 23

Figure 3.4: Screenshots of the HelloArDVS Android application

figure 3.5 shows the navigation hierarchy of the Android app.

Figure 3.5: Navigation hierarchy of the HelloArDVS Android application

For good usability, the connectivity manager starts immediately after launching the

24 CHAPTER 3. SOFTWARE

application. The application scans for bluetooth devices and the user can choose
the correct one. Once connected, the application reconnects automatically to the
ArDVS.
After that, the user can switch between three windows. The ArDVS live stream,
where the user can activate, stop and watch the event data stream forwarded by
the ArDVS. This is very useful, because in this way, the user can take a look, which
effect their algorithms have to the event data stream without any knowledge about
third party software.

3.2.2 Implementation

The Android application consists of two activities and one service. More detailed
information about the Android API can be found in the API Guides of the official
Android developers page. Block diagram 3.6 shows the relationship between the
classes of the Android app.

Figure 3.6: Including hierarchy of the classes of the Android application

SettingsFragment, ViewFragment and ConsoleFragment inherit from the class Frag-
ment. These classes are included by the MainActivity. In this Android application,
the MainActivity displays the main menu. The ConnectionActivity corresponds
with the BluetoothManager in the hierarchy diagram. The BluetoothService is a
background service and handles outgoing and incoming messages over Bluetooth.
The Bluetooth Service uses the BluetoothSocket class from the Android API. This
class provides functions for Bluetooth Serial Port Profile (SPP), which is an easy
to use API in order to communicate with the ArDVS library. The Implementation
part in this report is kept very short and simple. For more details please refer to
the source code of the Android app and the well documented Android API.

25

Chapter 4

Application: Event based
photography

Besides the examples, which are part of the ArDVS library, a full exemplary use-case
of the ArDVS was implemented to comprehend the library’s potential.

4.1 Motivation

A demo application serves as a tangible illustration of the ArDVS’ capabilities. A
great demonstrator of the DVS low latency event capturing in combination with the
library’s customizable filters is an event based camera trigger, pictured in figure 4.1.
The focus was on creating a useful application that is not to difficult to grasp and to
implement by the Arduino user as a first step to familiarize with the ArDVS library.

Figure 4.1: Visualization of demo application

26 CHAPTER 4. APPLICATION: EVENT BASED PHOTOGRAPHY

4.2 Components

The main components used for this use-case is the Arduino Due with the ArDVS
shield, an infrared LED connected to the shield, an Android smartphone with the
ArDVS app for configuration as well as a Canon 6D single-lens reflex camera on a
tripod.

4.3 Filters

The filter for selecting the region of interest is similar to the filterDvs example. The
following code shows how the filter is implemented.
If the event is in the region of interest, the eventCounter increases. If an event is older
than 100 milliseconds, the eventCounter is decreased again. If the eventCounter
reaches a selectable threshold, then the function for shooting a photo will be called.

void onEvent(char* event){

// filter all events , which between xStart , xEnd , yStart

, yEnd

if(myDvs.extractXFromEvent(event)>xStart &&

myDvs.extractXFromEvent(event)<xEnd &&

myDvs.extractYFromEvent(event)>yStart

&&

myDvs.extractYFromEvent(event)<yEnd){

onEventCount(myDvs.extractTimestampFromEvent(

event));

}

}

4.4 Camera remote control

The camera is remotely triggered by infrared light. Most single-lens reflex cameras
possess a remote control photo sensor with a simple burst based protocol. The
application makes use of an open-source library that supports the different timing
requirements for the manufacturers Canon, Nikon, Sony, Olympus, Minolta und
Pentax.
For activating the shutter on a Canon camera there are 16 pulses with a duty cycle
of 50% and a period of 22 microseconds necessary, followed by the same sequence of
pulses after a delay of 7330 microseconds, as shown in figure 4.2.

4.5. IMPLEMENTATION 27

Figure 4.2: Graph of the two bursts required for taking a photo[Luk15]

4.5 Implementation

In this demo setup we adjust the direction of the DVS using the pan-tilt-system and
point the LED towards the front of a Canon 6D where the remote sensor is located.
The DVS points in the direction of interest and in the Android app the regions of
interest are manually selected. Further, the Canon 6D is adjusted on the tripod for
the desired framing of the image as well as the settings like shutter speed, aperture
and exposure. When an object enters the region of interest, e.g. a bird leaving its
hiding place, a selectable output action is triggered. In this use-case the output
action is a burst by the infrared LED that serves as a remote control for the camera.
The result is a crisp picture of the bird leaving its hideout in the desired location of
the picture like in the sample picture in figure 4.3.

28 CHAPTER 4. APPLICATION: EVENT BASED PHOTOGRAPHY

Figure 4.3: Sample image for event based photography[Ama15]

29

Chapter 5

Conclusion

Processing live image data with an Arduino is very rare until now. The experience
from this practical course shows, that processing the event data stream from a DVS
is possible with low computational power. Additionally, we developed the ArDVS
development kit, which can be used by the Arduino community.
Equipped with an ArDVS and an Android phone the typical Arduino users with
very limited programming skills have everything they need to get started with the
DVS. The implemented example projects and demo application demonstrate, how
simple it is to realize an own project using a DVS. The Arduino IDE can be used to
implement simple algorithms for the DVS after including the ArDVS library. The
Android phone is used to show the ArDVS output only by downloading an Android
application.
There are still possibilities to extend the existing ArDVS library together with the
Android application. The most important functions for starting, stopping and pars-
ing the DVS data stream are already implemented. Now it is up to the creativity of
the Arduino community to come up with new features and exciting applications.

30 CHAPTER 5. CONCLUSION

LIST OF FIGURES 31

List of Figures

2.1 ArDVS shield . 7
2.2 Arduino Due[ard15] . 8
2.3 eDVS4337[ini15] . 9
2.4 HC-06[Pas15] . 10
2.5 Pan-tilt-system[4tr15] . 11
2.6 ArDVS board layout . 12
2.7 ArDVS board schematics . 12

3.1 Contents of the ArDVS Library . 14
3.2 Class diagram section . 16
3.3 Flowchart how the UART of the DVS module is read 17
3.4 Screenshots of the HelloArDVS Android application 23
3.5 Navigation hierarchy of the HelloArDVS Android application 23
3.6 Including hierarchy of the classes of the Android application 24

4.1 Visualization of demo application . 25
4.2 Graph of the two bursts required for taking a photo[Luk15] 27
4.3 Sample image for event based photography[Ama15] 28

32 LIST OF FIGURES

BIBLIOGRAPHY 33

Bibliography

[4tr15] 4tronix. 2 DOF Pan and Tilt, 2015. URL: http://4tronix.co.uk/store/
index.php?rt=product/product&product_id=232.

[Ama15] AmarnaZenter. Photobucket, 2015. URL: http://s1028.photobucket.
com/user/AmarnaZenter/media/1601500_662617957138046_

1104535053_n_zps890a1052.jpg.html.

[ard15] Fritzing Boards, 2015. URL: http://fritzing.googlecode.com/svn/

trunk/fritzing/parts/svg/core/breadboard/Arduino_DUE_V02b_

breadboard.svg.

[ini15] iniLabs. eDVS user guide, 2015. URL: http://www.inilabs.com/

support/edvs.

[Luk15] Luk. Canon RC-1 IR remote control reverse-engineered, 2015. URL: http:
//www.doc-diy.net/photo/rc-1_hacked/.

[Pas15] Pascal Romeyer. Bluetooth CAT System ou Data, 2015. URL: http:

//f4cvm.free.fr/realisation/connexion/bluetooth/data/cat.htm.

http://4tronix.co.uk/store/index.php?rt=product/product&product_id=232
http://4tronix.co.uk/store/index.php?rt=product/product&product_id=232
http://s1028.photobucket.com/user/AmarnaZenter/media/1601500_662617957138046_1104535053_n_zps890a1052.jpg.html
http://s1028.photobucket.com/user/AmarnaZenter/media/1601500_662617957138046_1104535053_n_zps890a1052.jpg.html
http://s1028.photobucket.com/user/AmarnaZenter/media/1601500_662617957138046_1104535053_n_zps890a1052.jpg.html
http://fritzing.googlecode.com/svn/trunk/fritzing/parts/svg/core/breadboard/Arduino_DUE_V02b_breadboard.svg
http://fritzing.googlecode.com/svn/trunk/fritzing/parts/svg/core/breadboard/Arduino_DUE_V02b_breadboard.svg
http://fritzing.googlecode.com/svn/trunk/fritzing/parts/svg/core/breadboard/Arduino_DUE_V02b_breadboard.svg
http://www.inilabs.com/support/edvs
http://www.inilabs.com/support/edvs
http://www.doc-diy.net/photo/rc-1_hacked/
http://www.doc-diy.net/photo/rc-1_hacked/
http://f4cvm.free.fr/realisation/connexion/bluetooth/data/cat.htm
http://f4cvm.free.fr/realisation/connexion/bluetooth/data/cat.htm

34 BIBLIOGRAPHY

LICENSE 35

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	Introduction
	Hardware
	Components
	Arduino Due
	eDVS4337
	Bluetooth module HC-06
	Pan-tilt-system

	Arduino shield
	Design
	Prototype iterations

	Software
	ArDVS library
	Definition
	Implementation
	Test
	Documentation
	Example projects

	Android application
	Definition
	Implementation

	Application: Event based photography
	Motivation
	Components
	Filters
	Camera remote control
	Implementation

	Conclusion
	List of Figures
	Bibliography

