
Integrated DVS recording and
tracking system in ROS

ADVANCED SEMINAR

submitted by
Jianjie Lin
Siqi Wang

NEUROSCIENTIFIC SYSTEM THEORY
Technische Universität München

Prof. Dr Jörg Conradt

Supervisor: Dipl.-Ing. Lukas Everding
Final Submission: 06.07.2016

In your final hardback copy, replace this page with the signed exercise sheet.

Abstract

Dynamic vision sensors, an advanced type of cameras which have independent pixel
and able to send events so long as they detect bright changes. 3D motion capture
system, which can track object’s exact position with fixed couples of cameras on the
walls inside a room, should be integrated with dynamic vision sensors. After com-
bination, what we are ought to get are information of moving object’s orientation
and position in a constructed 3D space. In order to do a real time monitoring, syn-
chronization is necessary. The original code in C/C++ languages for both systems
are provided, and what needs to be done is converting codes for both systems to
the ones can be successfully applied in Robot Operating System. Later, output all
data measured from both systems together at the same time. In this paper, authors
mainly talk about working principle and how to execute new code after integration.

2

CONTENTS 3

Contents

1 Introduction 5

2 Integrated DVS recording and tracking system in ROS 7
2.1 Convert the System into ROS . 7
2.2 ROS publisher and subscriber . 9
2.3 Synchronization among tracking and eDVS system 10
2.4 Camera calibration . 11

2.4.1 Calibration Model . 12
2.4.2 Calibration method . 13

3 Conclusion 15

List of Figures 17

Bibliography 19

4 CONTENTS

5

Chapter 1

Introduction

Traditional vision sensors capture objects by a series of successive frames. Huge
amount of useless information will be brought by the successive frames and such
information will occupy and waste RAM, disk space, energy, time and computational
power. In the meantime, every pixel has the same exposure time period, which
makes these vision sensors cannot be able to work properly in dark or extremely
bright environment. eDVS, which is the short form of dynamic vision sensors, is a
new type of camera with capability to solve such problems. eDVS cameras use a
patented technology which based on biologically inspired principle to work like our
retina: the pixels operate individually and only the events like changing of local
pixel-level caused by movement will be sent. By using eDVS, intensity changes can
be reported as a stream of events which include the pixel address, the time instant
of intensity change and its sign. In other words, brightness change on the edges of
any moving object can be detected by eDVS cameras. Although eDVS screen can
only display images in black, gray and white colors, in motion objects capturing
point of view, eDVS performs much better than common cameras.
In many situations, only the data recorded from eDVS is not enough to fulfill the
requirement. We also want to capture the exact position and orientation in space
of the object like what the traditional cameras do. Actually, we are able to achieve
such goal by applying a 3D motion capture system. This tracking system consists
of eight cameras, which track the sensing points on the eDVS camera. The sensing
points will be treated as a rigid body and displayed in a three-dimensional space
constructed before. The origin point is a fixed point formed when the space model
was built. Hence, the distance along hypothetic x, y, z coordinations can be easily
measured. Generally speaking, main task for us in this project is to integrate two
systems mentioned above and synchronize them. In addition, this new integrated
system should be operated on ROS platform. With this new integrated system,
users are able to get information detected from both eDVS recording and tracking
systems at any particular instant time.

6 CHAPTER 1. INTRODUCTION

7

Chapter 2

Integrated DVS recording and
tracking system in ROS

2.1 Convert the System into ROS

The Robot Operating System (ROS) is a framework for writing robot software, which
involves libraries and different tools to achieve the goal of creating complex robotic
behaviors. We choose ROS as an intermediate platform for the combination of eDVS
and tracking system mainly due to the following three reasons: distributed nature,
inter-platform operability and high efficiency when executing complex robotic com-
mands. Distributed nature of ROS makes it possible for external users to create
and publish their own packages, which greatly extends the usage and applications of
ROS. Up to now, there are more than 3000 ROS packages announced and exposed
to public by their programmers. These packages have a wide range, cover nearly
everything either in concept proof or industrial applications. ROS has the property
of inter-platform operability, which means programmers can work between very dif-
ferent subsystems that are probably running in different programming languages.
Such property is extremely suitable for our case, which is the combination of two
systems. Since distributed message system is used to connect different parts of ROS,
the whole system will not crash even if there is one component crashes. So robot
is more likely to continue working when it is controlled by ROS. That makes ROS
become stable even if doing some huge or complex processes
As already mentioned in introduction session, this project involves two systems:
eDVS-System and tracking-system, which are separately wrote in C/C++ languages,
are needed to be converted to be applied in ROS system. The Figure 2.1 shows the
basic GUI of the tracking system. In order to achieve this, the first step is to find
out all necessary libraries in both systems. Basically, the two super libraries are
needed: “tflog libs” and “Edvs”.
In addition, under the library “tflog libs”, there are five different sub libraries, which
are interconnected with each other.
For each library, the command “add library” is required. For example: Adding the

8 CHAPTER 2. INTEGRATED DVS RECORDING AND TRACKING SYSTEM IN ROS

library “npoint” into the CMakelist.txt, the command should be like the following:

add library(npoint

src/tflogs libs/npoint/src/npoint conn.c

src/tflogs libs/npoint/src/npoint logger.c

src/tflogs libs/npoint/src/npoint packet.c

)

Since interconnections exist between different libraries, only add files themselves
will not be enough. And this may lead to the compiling errors as well. The proper
method to fix the problem is to add related files from other libraries.

add library(npoint

src/tflogs libs/npoint/src/npoint conn.c

src/tflogs libs/npoint/src/npoint logger.c

src/tflogs libs/npoint/src/npoint packet.c

src/tflogs libs/conns/src/dvs conn.c

src/tflogs libs/conns/src/tcp client.c

src/tflogs libs/conns/src/udp link.c

src/tflogs libs/conns/src/udp multicast recv.c

src/tflogs libs/conns/src/udp server.c

src/tflogs libs/utils/src/utils.c

)

The other libraries are also needed to be wrote according to this format. Command
“add library” should be always followed by “add dependencies”, in order to tell
compiler the library’s name. e.g. “npoint”.

add dependencies(npoint

${catkin EXPORTED TARGETS}
)

Finally, all the libraries can be linked by command “target link libraries”:

target link libraries(npoint

${catkin LIBRARIES}
)

For more details about the CMakelist.txt, readers can refer to ROS official website.
The way to compile the ROS is by using the command “catkin make”. But before
doing such behavior, the computer in the tracking room is needed to switch to the
bash mode. It means that, in the terminal, command “bash” is typed.

2.2. ROS PUBLISHER AND SUBSCRIBER 9

Figure 2.1: The GUI of the tracking system

2.2 ROS publisher and subscriber

In this project, timing and position information in both systems are interested. In
addition, orientation information from tracking system is also necessary. It is obvious
that converting code must be prior to combining two systems. There are many
small but important points need to be treated carefully when doing the conversion.
Since valid data types in C++ and ROS are different, a new data type should be
defined when converting original C/C++ code to ROS ones. For example, “float”
is valid in C++ while not in ROS, it should be replaced by “float64/32” in this
case. In order to publish the information got from both systems, three message files
(“dvs dara type.msg”,“dvs message.msg” and “synchron.msg”) have to be created.
Since only the position and timing information are interested, in the message file
only the variables pos x, pos y, pos z, quan x, quan y, quan z, quan w and time end
are included. If there is any new requirement, readers can also insert the new
variable accordingly. Readers can refer to ROS official website on how to write
CMakelist.txt. As mentioned in the section 2.1, the advantage of the ROS-system
is that, programmers can arbitrarily subscribe and publish the message from other
nodes and topics. Because of the independence of two systems: eDVS and tracking
system, we have to use two nodes and two topics for communication.
By means of two topics in node “Sender”, different kinds of information from both
systems can be published separately. Later, subscriber “listener” will receive those
information, so that if there are some further requirements, it would be much easier
to develop them. Figure 2.2 is a demonstration of the relationship between the

10 CHAPTER 2. INTEGRATED DVS RECORDING AND TRACKING SYSTEM IN ROS

publisher and subscriber. Topic “Tracking system” is used to publish the message

Figure 2.2: Computation Graph of Software Nodes

from the tracking system, similarly, topic “eDVS” is used to publish the message
from the eDVS information. It needs to be pointed out that the sampling rate from
both systems are different, so that the publish rate for two topics are also different.
In this project, the baud rate of eDVS is 12000000 Hz, while the sampling rate of
the tracking system is only 0.2 Hz. The procedure to run the node is like following:

1. open a terminal: roscore

2. open a new terminal: cd catkin ws

3. rosrun synchronization synchronization node
if this node is not founded, the command “source ./devel/setup.bash” is
needed to type in the same terminal

4. open a new terminal : rosrun synchro listener synchro listener node

2.3 Synchronization among tracking and eDVS

system

In order to combine eDVS and tracking system, firstly, synchronization is needed
since it’s a bridge connects both systems. Initially, time recorded in tracking sys-
tem is according to real time by a function called “gettimeofday()”. That means
whenever users open the tracking system, time recording is always corresponding
to real time of the computer. However, in eDVS, time recording starts to count at
the moment eDVS is triggered. Therefore, every time users start the eDVS pro-
gram, timer inside the program will initialize and record time from zero. So the two
systems have different timing references. The approach is changing time recording
method of eDVS to real time reference as well. The procedures of this approach are
introduced as following:

1. The timestamps from eDVS is needed to be reset, before checking whether the
stream is open or not. In the meantime, the real time at this moment is stored
in the variable “reset time”.

2.4. CAMERA CALIBRATION 11

2. After the resetting, the eDVS counts time start from zero. The new times-
tamps is now added to “reset time”: dvs msg.dvs x=(events[e].t+reset time).

After these two implementations, in principle, both systems will have the same
timing reference, so that synchronization can be realized. The Figure 2.3 and 2.4
show the result. Although both timestamps are already in the real time, they still

Figure 2.3: Data from tracking system

have a 10e4 µs difference. Here are several explanations:

1. the sampling rate from the eDVS and tracking system is extremely different.
The baud rate from the eDVS is 12000000 bit/s, or rather 12 MHz, while the
sampling rate from the tracking system is 0.2 Hz.

2. Delay always exists in the eDVS and tracking system, which can also lead to
such result.

The modification to make the difference smaller can be done in the future.

2.4 Camera calibration

Distortion is recognized to be the easiest aberration since it deforms the image as
whole. Since straight lines in the object space are rendered as curved lines by sensors,
the name curvilinear distortion is frequently encountered. The most commonly
encountered distortions are radially symmetric, or approximately so, arising from the

12 CHAPTER 2. INTEGRATED DVS RECORDING AND TRACKING SYSTEM IN ROS

Figure 2.4: Data from eDVS

symmetry of a photographic lens. These radial distortions can usually be classified as
either barrel distortions or pincushion distortions. Camera calibration and reflection
is already done routinely for “normal”, frame-based cameras. Therefore, there are
many available library to tackle such tasks.

2.4.1 Calibration Model

Pinhole camera model is the fundamental of the model. Plumb Bob distortion
model, which is a simple model with distortion in radial and tangential directions
is used as an extended version by the calibration.
A standard 3 × 3 matrix shows focal length (fx, fy) and principal point (cx, cy) is
used as the intrinsic camera matrix.

K=

sx sθ 0x
0 sy oy
0 0 1

 f 0 0
0 f 0
0 0 1


where sx,sy is the scalar to convert the point in the metric unit to the pixel coor-
dinates, sθ corresponds to a skew factor, and (ox oy) are the coordinates (in pixels)
of the principle point relative to the image reference frame. In this project, the in-
trinsic camera matrix is defined in the file “undistortDVSPoints.hpp” with the value:

K=

233 0 69.583
0 232.19 53.021
0 0 1


Rectification and projection matrix can be provided by calibration in the stereo

2.4. CAMERA CALIBRATION 13

case.
The rectification matrix is the rotation matrix that aligns the camera coordinate
systems to the ideal stereo image plane so that epipolar lines are parallel. The pro-
jection matrix is a 3×4 stereo extension of the intrinsic matrix. The position of the
second camera’s optical center will be added into the first camera’s image frame.
Details information can be found in the CameraInfo ROS message documentation.
In a three-dimensional space, a point located in [X, Y, Z]T , the (x, y) projection of
this point on the rectified image is given by:

uv
w

 =P


X
Y
Z
1

, where x = u/w, and y = v/w.

2.4.2 Calibration method

As mentioned above, many available libraries can be used for camera calibration,
e.g. openCV, matlab. In this project, the openCV is applied. The event from the
eDVS with the position information events[e].x and events[e].y are both integers.
In order to convert the integer to float type, we need to apply the intrinsic camera
matrix K. In the main.cpp file, both type of position information are available. If
one wants the uncalibrated position information, events[e].x is suitable. If one wants
the calibrated position information, dst .at <double>(e,0), which has already been
calibrated by openCV .

14 CHAPTER 2. INTEGRATED DVS RECORDING AND TRACKING SYSTEM IN ROS

15

Chapter 3

Conclusion

eDVS, camera that only sensitive to brightness change, cannot get any information
about position. To improve and solve such problem, tracking system were intro-
duced. Therefore, the project goal is to integrate eDVS and tracking systems, later,
information collected from two systems are ought to be published. To make the
combination of two systems user friendly, data collection should be done together
for both systems. That means synchronization is also required. According to the
project requirement, the new system after integration should be suitable for Robot
Operating System (ROS). Therefore, code converting is also a part of the project.
So far we have already finished what we wanted to do at the beginning of the project,
and achieved the aim of the project successfully. Both of the data collection and
synchronization have already been realized within one new integrated system exe-
cuted on ROS.
Here the command to run the program in the tracking room by chair of Neurosci-
entific System Theory is presented :

1. Every time a terminal is opened, check if the terminal is bash mode. If not,
type “bash”.

2. open a terminal: roscore

3. open a new terminal:

(a) cd catkin ws,

(b) source ./devel/setup.bash

(c) catkin make (if no code is changed, then it’s no neeed to do again)

(d) rosrun synchronization synchronization node

4. open a new terminal: rosrun synchro listener synchro listener node

16 CHAPTER 3. CONCLUSION

LIST OF FIGURES 17

List of Figures

2.1 The GUI of the tracking system . 9
2.2 Computation Graph of Software Nodes 10
2.3 Data from tracking system . 11
2.4 Data from eDVS . 12

18 LIST OF FIGURES

LICENSE 19

License

This work is licensed under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this license, visit http://creativecommons.org or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105,
USA.

http://creativecommons.org/licenses/by/3.0/de/

	Introduction
	Integrated DVS recording and tracking system in ROS
	Convert the System into ROS
	ROS publisher and subscriber
	Synchronization among tracking and eDVS system
	Camera calibration
	Calibration Model
	Calibration method

	Conclusion
	List of Figures
	Bibliography

