Stellenangebote Wissenschaftlicher Mitarbeiter

Im Folgenden finden sie eine Übersicht über alle gegenwärtigen Stellenangebote.

Ph.D. in Neuroscience and Robotics

The research group "Neuroscientific System Theory" within the Institute for Automation and Autonomous Systems is investigating neuronal principles for information processing (“How does our brain think?”), and applies such principles to advance technological systems (“Why can’t my robot do this?”). Examples of such are networks of distributed graphical information processing systems for large global problems or event-based vision sensors and algorithms. Most research projects in the NST-lab cover the whole range from biological modeling to technological implementations. This requires researchers who are on one hand curious about models of biological information processing, and on the other hand are dedicated to implementing algorithms in real-world interactive systems. Depending on the particular project, this often involves substantial hardware/electronic design and implementation.

We are continuously looking for students with a strong passion for such an interdisciplinary area between Systemic Neuroscience and Engineering.

Here are several current project ideas, which sooner or later will turn into fully funded projects:

  • Distributed Graphical Cognitive Systems
    A network of individual computational units, each with limited computing power, memory, and communication, which all together solve complex global problems. Such networks might be hand-designed or autonomously constitute their topology and possibly learn or adapt based on sensory input. But all such systems separate their tasks into “localized sub-problems”, where each single actor (a unit in the network) contributes to a global solution, without understanding the complete problem. This style of information processing is very different from today’s computing algorithms, but might reflect distributed information processing in brains.
  • Neural-Inspired Hardware for Information Processing
    Believe Propagation in Factor Graphs (FG) is a standard technique to represent complex relations between variables as computationally simple distributed systems. Such variables can represent e.g. sensory readings or desired motor outputs of robotic systems. Computations in FGs are typically performed on sequential digital hardware (standard PC), which often results in long settling times of FGs with loops. Here, we are envisioning massively parallel hardware systems to compute equilibriums of loopy FGs quickly (such as FPGAs or microcontrollers) or even instantaneously (analog hardware systems). This research might provide new insight in high speed motor control problems in humans and robots (eg. robotic arm visual servoing).
  • Event-Based Vision Systems for Robots
    Vision is probably our most complex sensory system: around 1/3rd of the human cortex seems to be devoted to visual information processing. Robotic systems also often include cameras, and typically also need strong computational power to process vision data. Biology, however, uses a trick to simplify processing of visual information: the eye already compresses information at the source. Instead of continuously communicating full images to the brain, it only encodes visual changes as streams of spike-events. We have hardware sensors that work just the same: in contrast to traditional cameras, these sensors only transmit updates - or changes - within their field-of-view. We are exploring their application in several scenarios, which include object tracking, distance sensing, obstacle avoidance, and ego motion stabilization of airborne helicopters.

If you are interested in such research areas and you can envision studying towards a Ph.D. in this group, please read the following web-page carefully (created by my friend Matt Cook of INI, ETH/University-Zurich):   ---  especially the section "My General Advice" under “PhD Projects”!

Now reconsider!

Still interested? Contact us!   Details here: Jörg Conradt

Check out projects, and explain who you are and how you fit in the group!

Please send an email outlining in about five to ten lines why you are interested, state your skills and knowledge, and explain why I should choose you among those who apply. I will ignore email without clear indication that you know what you are proposing! Thank you!

We are looking forward to hearing from you!

Neuromorphic Computing

Stellenausschreibung für eine anteilige Wissenschaftliche Mitarbeiterstelle (E13) zur möglichen Promotion.

Die Forschungsgruppe Neurowissenschaftliche Systemtheorie (NST) der TU München, Fakultät für Elektrotechnik und Informationstechnik, sucht zum nächstmöglichen Zeitpunkt eine/n wissen-schaftliche/n Mitarbeiter/-in im Forschungsfeld NeuroComputing. Die Forschungsarbeit mit Ziel der Promotion wird teilweise durch die Hans L. Merkle-Stiftung für Spitzenforschung in Naturwissenschaft und Technik gefördert (


Intelligente, lernfähige Algorithmen zur Datenverarbeitung gehören zu den Schlüsseltechnologien autonomer Rechensysteme des kommenden Jahrzehnts. Beispielsweise die Fähigkeit, in natürlichen Umgebung zu navigieren und auch in unvorhersehbaren Situationen schnell die richtigen Entscheidungen zu treffen, ist nicht mehr allein Menschen vorbehalten. Dank tiefer neuronaler Netzwerke („Deep Neuronal Networks“, und biologisch inspirierten Lernalgorithmen können intelligente Systeme von morgen diese Fähigkeiten erlernen.

Die Arbeitsgruppe für Neurowissenschaftliche Systemtheorie der TU München erforscht solche komplexen Netzwerke zur Datenmodellierung auf der Rechenarchitektur „SpiNNaker“ ( Dieses speziell auf die Anforderungen neuronaler Informatik ausgelegte System besteht aus tausenden hocheffizienten ARM-Rechenkernen, die durch asynchrone Router zu einem quasi beliebig erweiterbaren Netzwerk verbunden sind. Somit lassen sich neben großen biologischen Netzwerken auch angepasste klassische Algorithmen, wie verteilte Kalman-Filter oder eben künstliche tiefe Neuronale Netzwerke (tNN), effizient umsetzen.

Ziel dieser Forschungsarbeit ist die Erkundung, welche Arten von Neuronen, Synapsen, tNN und Lernalgorithmen sich effizient auf dieser skalierbaren Rechnerarchitektur als event-basierte Netzwerke umsetzen lassen. Deren Vorteile in Bezug auf gesteigerte Recheneffizienz und geringeren Energiebedarf sind sowohl in der Trainingsphase, als auch in der Ausführungsphase zu identifizieren. Eine nachfolgende Portierung gelernter tNN auf klassische Hardware (beispielsweise FPGA) oder neuartige Substrate (z.B. Memristor- oder ReRAM-basierte Systeme) erlaubt die energieeffiziente Anwendung trainierter tNN in industrienahen Bereichen.

Der/die Mitarbeiter/-in wird eng in aktuelle Forschung sowie Studierendenbetreuung (Bachelor- sowie Masterarbeiten) der Forschungsgruppe NST eingebunden, sowie von einem Mentor der Robert BOSCH GmbH - Zentralbereich Forschung und Vorausentwicklung - betreut. Die Beschäftigung erfolgt mit entsprechender Vergütung nach dem Tarifvertrag für den öffentlichen Dienst der Länder (TV-L). Die Möglichkeit zur Promotion ist gegeben und erwünscht. Die TU München strebt eine Erhöhung des Frauenanteils an, qualifizierte Frauen werden deshalb nachdrücklich aufgefordert, sich zu bewerben. Schwerbehinderte werden bei ansonsten im Wesentlichen gleicher Eignung und Qualifikation bevorzugt.

Bitte senden Sie Ihre aussagekräftigen Bewerbungsunterlagen unter Angabe des Stichworts “NeuroComputing“ bevorzugt per Email:

Technische Universität München
Neurowissenschaftliche Systemtheorie
Prof. Dr. Jörg Conradt
Arcisstr. 21, 80290 München

Postdoc in Event-based Vision and Neurocomputing Systems

The NST group at TU München, Germany,

is looking for up to two postdoctoral researchers to join the group as soon as available. Research covers event-based vision and neurocomputing systems from biological modelling to engineering applications.

Upcoming projects address engineering applications of neural computation; e.g. neuronal models for sensory perception, reasoning, and action generation in robotics. Preference will be given to (a) engineering applications of event-based vision and (b) investigations in spiking computing algorithms on neuromorphic hardware, such as SpiNNaker, TrueNorth, Spikey, etc. The successful postdoc is expected to initiate novel research projects (initial funding is available) and to supervise graduate and undergraduate students in his/her area of expertise. Strong programming skills are essential!

Current funding is secured until September 2018 with possible extension. The positions include a reduced teaching obligation of ~2.5h per week in the recently established ENB Elite Master Program on NeuroEngineering (

  • To inquire please send brief email to
  • To apply, please send a concise (max 1/2 page) statement of your research interest and how you fit in our group, accompanied by your CV and names + email addresses of 2 references to

We are very much looking forward to extending our group!